Олимпиада «Росатом» по физике

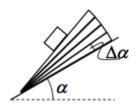
11 класс, 2013 год

1. Цилиндрический сосуд с идеальным газом разделён подвижным поршнем на две части. Газ в левой части имеет температуру T_1 , в правой — температуру T_2 . При этом отношение объёмов оказывается равным $V_1/V_2 = 3/2$. После того как температуры выровнялись, соотношение объёмов изменилось: $V_1'/V_2'=2/3$. Найти отношение температур T_1/T_2 .

$$\frac{\hbar}{6} = \frac{\mathbf{z}_{L}}{\mathbf{I}_{L}}$$

2. Три одинаковых точечных заряда расположены в вершинах равностороннего треугольника со стороной а. Напряжённость электрического поля в точке, находящейся посередине между двумя зарядами, равна E. Найти потенциал электрического поля в этой точке.

$$\varphi = \frac{1}{2} \operatorname{Eq} a$$


3. Ширина реки равна l. Если лодка плывёт против течения реки, её скорость относительно земли равна v, если по течению — 3v. За какое минимальное время лодка может пересечь реку?

$$\frac{1}{v^2} = \min_{\mathbf{r}} \mathbf{r}$$

4. (Л. Эйлер, статья «Об ударе пуль при стрельбе по доске», 1771 г.) В центр квадратной свободно висящей доски попадает пуля. Пуля пробивает доску насквозь, если её скорость до удара больше v_0 . С какой скоростью будет двигаться доска, если скорость пули до удара $2v_0$? Масса пули m, масса доски M, силу сопротивления считать не зависящей от скорости.

$$\left(\overline{\varepsilon} \nabla - 2\right) \frac{{}_{0}^{0} m}{m + M} = u$$

5. На наклонной плоскости, составляющей угол α с горизонтом, лежит стопка из 10 одинаковых по форме клиньев с малым углом $\Delta \alpha$ при вершине (см. рисунок; клинья нарисованы не все). По поверхности верхнего клина скользит тело массой M. Найти силу, действующую на наклонную плоскость со стороны стопки клиньев, если известно, что все они покоятся, а трение между поверхностями отсутствует.

$$F=Mg_{\frac{2\sin(2\alpha+20\Delta\alpha)}{2\sin\alpha}}$$