Геометрия. IMO

Данный листок содержит все задачи по геометрии, которые предлагались на Международной математической олимпиаде (IMO) начиная с 2005 года.

Международная математическая олимпиада проходит в два дня. Задачи 1, 2, 3 даются в первый день, задачи 4, 5, 6 — во второй. В варианте каждого дня задачи обычно расположены по возрастанию сложности; таким образом, задачи 1 и 4 являются «простыми», задачи 2 и 5 — «средней сложности», задачи 3 и 6 — самые трудные.

Принцип нумерации задач листка: задача 15.3 предлагалась в 2015 году под номером 3.

Problems 1 and 4

15.4. Triangle ABC has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment BC at points D and E, such that B, D, E, and C are all different and lie on line BC in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C, and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle BDF and the segment AB. Let L be the second point of intersection of the circumcircle of triangle CGE and the segment CA.

Suppose that the lines FK and GL are different and intersect at the point X. Prove that X lies on the line AO.

14.4. Points P and Q lie on side BC of acute-angled triangle ABC so that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Points M and N lie on lines AP and AQ, respectively, such that P is the midpoint of AM, and Q is the midpoint of AN. Prove that lines BM and CN intersect on the circumcircle of triangle ABC.

13.4. Let ABC be an acute-angled triangle with orthocenter H, and let W be a point on the side BC, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_1 the circumcircle of BWN, and let X be the point on ω_1 such that WX is a diameter of ω_1. Analogously, denote by ω_2 the circumcircle of CWM, and let Y be the point on ω_2 such that WY is a diameter of ω_2. Prove that X, Y and H are collinear.

12.1. Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let S be the point of intersection of the lines AF and BC, and let T be the point of intersection of the lines AG and BC.

Prove that M is the midpoint of ST.

10.4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C intersects the line AB at S. Suppose that $SC = SP$. Prove that $MK = ML$.

09.4. Let ABC be a triangle with $AB = AC$. The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the sides BC and CA at D and E, respectively. Let K be the incentre of triangle ADC. Suppose that $\angle BEK = 45^\circ$. Find all possible values of $\angle CAB$.

1
08.1. An acute-angled triangle ABC has orthocentre H. The circle passing through H with centre the midpoint of BC intersects the line BC at A_1 and A_2. Similarly, the circle passing through H with centre the midpoint of CA intersects the line CA at B_1 and B_2, and the circle passing through H with centre the midpoint of AB intersects the line AB at C_1 and C_2. Show that $A_1, A_2, B_1, B_2, C_1, C_2$ lie on a circle.

07.4. In triangle ABC the bisector of angle BCA intersects the circumcircle again at R, the perpendicular bisector of BC at P, and the perpendicular bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK and RQL have the same area.

06.1. Let ABC be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$\angle PBA + \angle PCA = \angle PBC + \angle PCB.$$

Show that $AP \geq AI$, and that equality holds if and only if $P = I$.

05.1. Six points are chosen on the sides of an equilateral triangle ABC: A_1, A_2 on BC, B_1, B_2 on CA and C_1, C_2 on AB, such that they are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths.

Prove that the lines A_1B_2, B_1C_2 and C_1A_2 are concurrent.

Problems 2 and 5

12.5. Let ABC be a triangle with $\angle BCA = 90^\circ$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment CD. Let K be the point on the segment AX such that $BK = BC$. Similarly, let L be the point on the segment BX such that $AL = AC$. Let M be the point of intersection of AL and BK.

Show that $MK = ML$.

11.2. Let S be a finite set of at least two points in the plane. Assume that no three points of S are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in S$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to S. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of S. This process continues indefinitely.

Show that we can choose a point P in S and a line ℓ going through P such that the resulting windmill uses each point of S as a pivot infinitely many times.

10.2. Let I be the incentre of triangle ABC and Γ be its circumcircle. Let the line AI intersects Γ again at D. Let E be a point on the arc BDC, and F a point on the side BC such that

$$\angle BAF = \angle CAE < \frac{1}{2}\angle BAC.$$

Finally, let G be the midpoint of segment IF. Prove that the lines DG and EI intersect on Γ.

09.2. Let ABC be a triangle with circumcentre O. The points P and Q are interior points of the sides CA and AB, respectively. Let K, L and M be the midpoints of the segments BP, CQ and PQ, respectively, and let Γ be the circle passing through K, L and M. Suppose that the line PQ is tangent to the circle Γ. Prove that $OP = OQ$.

2
07.2. Consider five points A, B, C, D and E such that $ABCD$ is a parallelogram and $BCED$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment DC at F and intersects line BC at G. Suppose also that $EF = EG = EC$. Prove that ℓ is the bisector of $\angle DAB$.

05.5. Let $ABCD$ be a fixed convex quadrilateral with $BC = DA$ and BC not parallel with DA. Let two variable points E and F lie on the sides BC and DA, respectively and satisfy $BE = DF$. The lines AC and BD meet at P, the lines BD and EF meet at Q, the lines EF and AC meet at R. Prove that the circumcircles of the triangles PQR, as E and F vary, have a common point other than P.

Problems 3 and 6

15.3. Let ABC be an acute triangle with $AB > AC$. Let Γ be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on Γ such that $\angle HQA = 90^\circ$, and K be the point on Γ such that $\angle HKQ = 90^\circ$. Assume that the points A, B, C, K, and Q are all different, and lie on Γ in this order.
Prove that the circumcircles of triangles KQH and FKM are tangent to each other.

14.3. Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^\circ$. Point H is the foot of the perpendicular from A to BD. Points S and T lie on sides AB and AD, respectively, such that H lies inside triangle SCT and
\[
\angle CHS - \angle CSB = 90^\circ, \quad \angle THC - \angle DTC = 90^\circ.
\]
Prove that line BD is tangent to the circumcircle of triangle TSH.

13.3. Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC at the point A_1. Define the points B_1 on CA and C_1 on AB analogously, using the excircles opposite B and C, respectively. Suppose that the circumcentre of triangle $A_1B_1C_1$ lies on the circumcircle of triangle ABC. Prove that triangle ABC is right-angled.

11.6. Let ABC be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_a, ℓ_b and ℓ_c be the lines obtained by reflecting ℓ in the lines BC, CA and AB, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_a, ℓ_b and ℓ_c is tangent to the circle Γ.

08.6. Let $ABCD$ be a convex quadrilateral with $|BA| \neq |BC|$. Denote the incircles of triangles ABC and ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to the ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents of ω_1 and ω_2 intersect on ω.

06.6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.