Простые механизмы

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Mexahuзм — это приспособление для преобразования силы (её увеличения или уменьшения). Простые механизмы — это рычаг и наклонная плоскость.

Рычаг

Pычаг — это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 изображён рычаг с осью вращения O. К концам рычага (точкам A и B) приложены силы $\vec{F_1}$ и $\vec{F_2}$. Плечи этих сил равны соответственно l_1 и l_2 .

Условие равновесия рычага даётся правилом моментов: $F_1l_1=F_2l_2$, откуда

$$\frac{F_1}{F_2} = \frac{l_2}{l_1} \,.$$

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 H поднять груз весом 700 H, нужно взять рычаг с отношением плеч 7 : 1 и

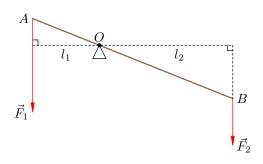


Рис. 1. Рычаг

положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз бо́льшую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца — это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок

Важной разновидностью рычага является $6no\kappa$ — укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку O).

На правом конце нити в точке D закреплён груз весом \vec{P} . Напомним, что вес тела — это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес \vec{P} приложен к точке D, в которой груз крепится к нити.

К левому концу нити в точке C приложена сила \vec{F} .

Плечо силы \vec{F} равно OA=r, где r — радиус блока. Плечо веса \vec{P} равно OB=r. Значит, неподвижный блок является

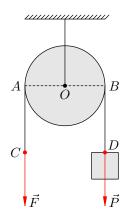


Рис. 2. Неподвижный блок

равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых,

имеем равенство F = P, а во-вторых, в процессе движении груза и нити перемещение точки C равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок

На рис. З изображён nodeuэсный бло κ , ось которого перемещается вместе с грузом. Мы тянем за нить с силой \vec{F} , которая приложена в точке C и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити OD.

В данный момент времени неподвижной точкой является точка A, и именно вокруг неё поворачивается блок (он бы «перекатывается» через точку A). Говорят ещё, что через точку A проходит меновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза \vec{P} приложен в точке D крепления груза к нити. Плечо силы \vec{P} равно AO=r.

А вот плечо силы \vec{F} , с которой мы тянем за нить, оказывается в два раза больше: оно равно AB=2r. Соответственно, условием равновесия груза является равенство F=P/2 (что мы и видим на рис. 3: вектор \vec{F} в два раза короче вектора \vec{P}).

Следовательно, nodeuжсный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку C придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку C) — не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос εhus для подъёма груза $\varepsilon \varepsilon px$. Внешнее усилие на тросе снова обозначено вектором \vec{F} .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

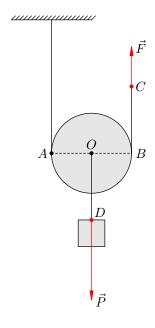


Рис. 3. Подвижный блок

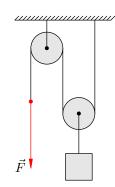


Рис. 4. Комбинация блоков

Наклонная плоскость

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется *наклонной плоскостью*. Наклонная плоскость — это ровная плоская поверхность, расположенная под некоторым углом α к горизонту. В таком случае коротко говорят: «наклонная плоскость с углом α ».

Найдём силу, которую надо приложить к грузу массы m, чтобы равномерно поднять его по $\operatorname{гла}\partial\kappa o\check{u}$ наклонной плоскости с углом α . Эта сила \vec{F} , разумеется, направлена вдоль наклонной плоскости (рис. 5).

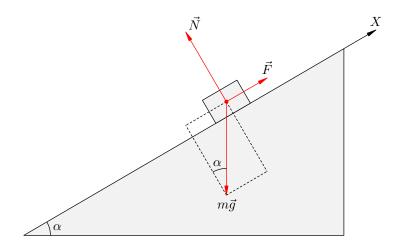


Рис. 5. Гладкая наклонная плоскость

Выберем ось X так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

$$m\vec{g} + \vec{N} + \vec{F} = \vec{0}.$$

Проектируем на ось X:

$$-mg\sin\alpha + F = 0,$$

откуда

$$F = mq \sin \alpha$$
.

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную mg. Видно, что F < mg, поскольку $\sin \alpha < 1$. Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол α .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2:1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом P, нужно к большему плечу приложить силу P/2. Но для поднятия груза на высоту h большее плечо придётся опустить на 2h, и совершённая работа будет равна

$$A = \frac{P}{2} \cdot 2h = Ph,$$

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу $F=mg\sin\alpha$, меньшую силы тяжести. Однако, чтобы поднять груз на высоту h над начальным положением, нам нужно пройти путь $l=h/\sin\alpha$ вдоль наклонной плоскости. При этом мы совершаем работу

$$A = mg\sin\alpha \frac{h}{\sin\alpha} = mgh,$$

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма

На практике приходится различать *полезную работу* $A_{\text{полезн}}$, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и *полную работу* $A_{\text{полн}}$, которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:

- полезной работы;
- работы, совершённой против сил трения в различных частях механизма;
- работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

$$\eta = rac{A_{
m полезн}}{A_{
m полн}} \, .$$

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом α при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен μ .

Пусть груз массы m равномерно поднимается вдоль наклонной плоскости под действием силы \vec{F} из точки P в точку Q на высоту h (рис. 6). В направлении, противоположном перемещению, на груз действует сила трения скольжения \vec{f} .

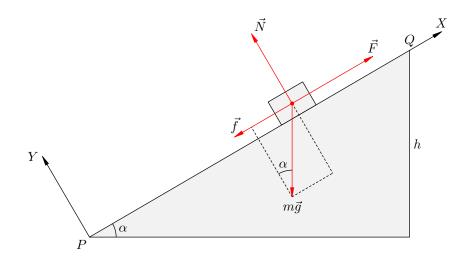


Рис. 6. Наклонная плоскость с трением

Ускорения нет, поэтому силы, действующие на груз, уравновешены:

$$m\vec{g} + \vec{N} + \vec{F} + \vec{f} = \vec{0}.$$

Проектируем на ось X:

$$-mg\sin\alpha + F - f = 0. (1)$$

Проектируем на ось Y:

$$-mg\cos\alpha + N = 0. (2)$$

Кроме того,

$$f = \mu N. (3)$$

Из (2) имеем:

$$N = mq \cos \alpha$$
.

Тогда из (3):

$$f = \mu mg \cos \alpha$$
.

Подставляя это в (1), получаем:

$$F = mg\sin\alpha + f = mg\sin\alpha + \mu mg\cos\alpha = mg(\sin\alpha + \mu\cos\alpha).$$

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

$$A_{\text{полн}} = F \cdot PQ = mg(\sin \alpha + \mu \cos \alpha) \frac{h}{\sin \alpha} = mgh(1 + \mu \cot \alpha).$$

Полезная работа, очевидно, равна:

$$A_{\text{полезн}} = mgh.$$

Для искомого КПД получаем:

$$\eta = rac{A_{ ext{полезн}}}{A_{ ext{полн}}} = rac{mgh}{mgh(1 + \mu \operatorname{ctg} lpha)} = rac{1}{1 + \mu \operatorname{ctg} lpha} \,.$$