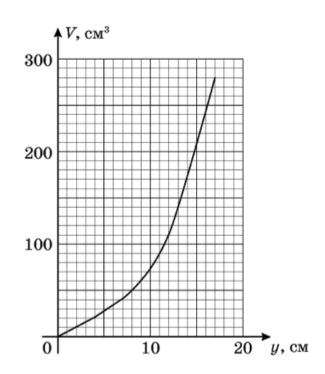
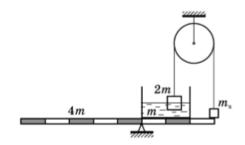
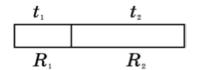

Всероссийская олимпиада школьников по физике


9 класс, региональный этап, 2017/18 год

Задача 1. По прямому участку дороги с одинаковой скоростью v друг за другом едут две машины, одна из которых при торможении может двигаться с предельным ускорением a_1 , а другая — с a_2 . Если с постоянным ускорением до полной остановки начинает тормозить водитель передней машины, то водитель задней реагирует и нажимает на педаль тормоза не сразу, а с задержкой $\tau = 0.3$ с. В зависимости от того, какая из машин едет впереди, безопасные дистанции, исключающие столкновение между ними, оказываются равными $L_1 = 6$ м или $L_2 = 9$ м. Определите, с какой скоростью едут машины. Оцените разность ускорений Δa машин, если известно, что сами ускорения примерно равны 5 м/c^2 .

$$u = \frac{1}{2\tau} = 25 \text{ M/c}; \Delta a = \frac{4(L_2 - L_1)a^2\tau^2}{(L_1 + L_2)^2} = 0, 12 \text{ M/c}^2$$


Задача 2. Цилиндрический сосуд с поршнем соединён коническим переходником с трубкой постоянного сечения. Разность уровней воды в правом и левом колене $h=20~{\rm cm}$. В трубку медленно наливают воду, измеряя объём V добавленной воды и подъём уровня y в правом колене. С помощью графика зависимости V от y найдите массу поршня и объём конической части сосуда. Трение между поршнем и цилиндром не учитывайте. Плотность воды $\rho = 1 \, \Gamma/\mathrm{cm}^3$, $q = 10 \text{ m/c}^2$.


650 г; 98 см³

Задача 3. Прямоугольный лёгкий сосуд с жидкостью массой m помещён на однородный рычаг массой 4m. В жидкость опущено тело массой 2m (с плотностью меньшей, чем плотность жидкости), удерживаемое нитью, перекинутой через блок (см. рисунок). Какой массы m_x груз необходимо прикрепить к противоположному концу нити и разместить на краю рычага, чтобы система осталась в равновесии? Трения в осях рычага и блока нет. Необходимые расстояния можно взять из рисунка.

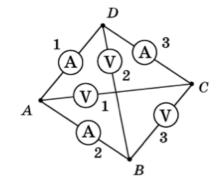
 $m \xi > x m > \frac{\varepsilon}{m}$

Задача 4. Два цилиндрических проводника разной длины, но одинакового диаметра, изготовлены из меди. Их сопротивления и температуры (в градусах Цельсия) соответственно равны R_1 , R_2 , t_1 , t_2 . Проводники соединяют плоскими гранями. Каким окажется сопротивление составного проводника после того как температуры его частей выровняются? Тепло-

обменом с окружающей средой и тепловым расширением меди пренебречь.

 Π римечание: сопротивление проводника при температуре t равно

$$R = R_0 (1 + \beta(t - t_0)),$$


где R_0 — сопротивление проводника при $t_0=0\,^{\circ}\mathrm{C},\,\beta$ — температурный коэффициент сопротивления, причём $\beta t\ll 1$.

 $R = R_1 + R_2$

Задача 5. В рёбра тетраэдра ABCD включены три амперметра с внутренним сопротивлением $R_A=0,1$ Ом и три вольтметра с внутренним сопротивлением $R_V=10$ кОм. Определите показания всех приборов при подключении источника с напряжением $U_0=1,5$ В:

- а) к точкам A и D;
- б) к точкам B и C.

См. конец листка

Ответ к задаче 5

- a) $U_{AC} \approx 1.5$ B, $U_{BC} \approx 1.5$ B, $U_{BD} \approx 1.5$ B, $I_{AD} = 15$ A, $I_{AB} = 3.0 \cdot 10^{-4}$ A, $I_{CD} = 3.0 \cdot 10^{-4}$ A.
- б) $U_{AC}=1$ В, $U_{BC}=1.5$ В, $U_{BD}=1$ В, $I_{AD}=5$ А, $I_{AB}=5$ А, $I_{CD}=5$ А.