Линза и маятник

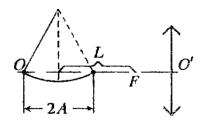
Задача 1. (« Φ изmex», 2011) Груз совершает колебания с амплитудой A и периодом T вдоль вертикали на упругой пружине. Масса пружины намного меньше массы груза. Груз находится на расстоянии 6F/5 от тонкой собирающей линзы с фокусным расстоянием F, вблизи её главной оптической оси, которая горизонтальна. На экране получено изображение колеблющегося груза.

- 1) На каком расстоянии от линзы находится экран?
- 2) С какой амплитудой колеблется изображение?
- 3) Найдите максимальную скорость груза.
- 4) Найдите скорость изображения в те моменты, когда смещение груза от положения равновесия равно $\frac{3}{4}A$.

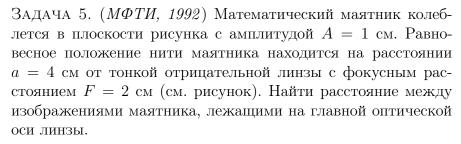
$$\boxed{ \frac{\Lambda}{T} \frac{\Lambda}{2} = u \text{ (L ; $\frac{\Lambda}{T}$ = xem} \text{)} }$$

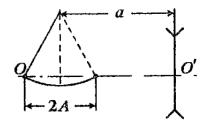
Задача 2. (« $\Phi usmex$ », 2011) Шарик на на нити длиной $l=40~{\rm cm}$ совершает малые колебания в поле тяжести Земли в вертикальной плоскости с угловой амплитудой $\alpha_0 = 0,1$. Размеры шарика малы по сравнению с длиной нити. Плоскость колебаний шарика перпендикулярна главной оптической оси тонкой собирающей линзы с фокусным расстоянием $F=15~{\rm cm}$ и находится на расстоянии 4F/3 от линзы. Шарик движется вблизи оси линзы. На экране получено изображение колеблющегося шарика.

- 1) На каком расстоянии от линзы находится экран?
- 2) Во сколько раз расстояние между крайними положениями изображения больше расстояния между крайними положениями шарика?
 - 3) Найдите максимальную угловую скорость Ω_0 шарика.
- 4) Найдите скорость изображения в те моменты, когда нить маятника составляет угол $\frac{4}{5}\alpha_0$ с вертикалью.


Указание. При малых углах α можно считать, что $\sin \alpha \approx \alpha$, $\cos \alpha \approx 1 - \frac{\alpha^2}{2}$. Принять $q = 10 \text{ m/c}^2$.

Задача 3. (« Φ изmex», 2012) Гайка, висящая на пружине, совершает вертикальные колебания, двигаясь перпендикулярно главной оптической оси линзы с фокусным расстоянием $F=20~{
m cm}$. На экране, который можно перемещать, получено изображение гайки. При этом максимальная скорость изображения оказалась в три раза меньше максимальной скорости гайки.


- 1) Найдите расстояние между гайкой и линзой.
- 2) На какое расстояние и куда (по отношению к гайке) следует переместить линзу, чтобы максимальная скорость изображения уменьшилась в два раза по сравнению с предыдущей?


1) 80 см; 2) на 60 см от гайки

Задача 4. ($M\Phi T U$, 1992) Математический маятник раскачивается с амплитудой A=1 см в плоскости рисунка (см. рис.). Равновесное положение нити маятника находится на расстоянии $L=\sqrt{5}$ см от переднего фокуса тонкой положительной линзы. Расстояние между изображениями маятника, лежащими на главной оптической оси линзы, равно $\Delta=2$ см. Найти фокусное расстояние линзы.

$$F = \sqrt{\frac{(L^2 - \Lambda^2)}{\Delta \Lambda}} = 2 \text{ cm}$$

$$\Delta = \frac{2AF^2}{5} = \frac{8}{35}$$
 cm