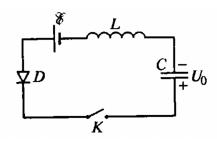

Диод и катушка

Задача 1. ($M\Phi T U$, 1999) В схеме, изображённой на рисунке, при разомкнутом ключе K конденсатор ёмкостью C=20 мк Φ заряжен до напряжения $U_0=12$ В. ЭДС аккумулятора $\mathscr{E}=5$ В. Индуктивность катушки L=2 Гн.

- 1) Чему равен ток, установившийся в цепи после замыкания ключа?
- 2) Чему равен максимальный ток в цепи после замыкания ключа?

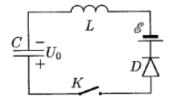
Внутренним сопротивлением аккумулятора и омическим сопротивлением катушки пренебречь. D — идеальный диод.



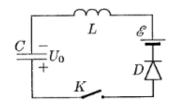
A 22,0 = $(3 - 0)^{\frac{1}{2}} V = \min_{x \in \mathbb{R}} I(x; 0) = I(1)$

ЗАДАЧА 2. ($M\Phi T U$, 1999) В схеме, изображённой на рисунке, при разомкнутом ключе K конденсатор ёмкостью C=10 мк Φ заряжен до напряжения $U_0=10$ В. ЭДС аккумулятора $\mathscr{E}=15$ В, индуктивность катушки L=0,1 Гн.

- 1) Чему равен установившийся ток в цепи после замыкания ключа?
- 2) Чему равен максимальный ток в цепи после замыкания ключа?

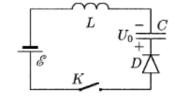

Внутренним сопротивлением аккумулятора и омическим сопротивлением катушки пренебречь. D — идеальный диод.

A $\eth 0.0 = (0 U - \Im) \frac{\overline{\Im}}{\overline{J}} \bigvee = \underset{\text{xem}}{\text{A}} I \text{ (2 ; 0 = } I \text{ (1)})$


Задача 3. ($M\Phi T U$, 2004) В схеме, приведённой на рисунке, при разомкнутом ключе K конденсатор ёмкостью C=20 мк Φ заряжен до напряжения $U_0=8$ В. Индуктивность катушки L=0,2 Гн, ЭДС батареи $\mathscr{E}=3$ В, диод D— идеальный.

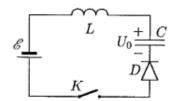
- 1) Определить максимальный ток в цепи после замыкания ключа K.
- 2) Какое напряжение установится на конденсаторе после замыкания ключа?

 $\Gamma_{
m Imax} = (U_0 - \&) \sqrt{\frac{C}{L}} = 50$ мА; 2) $U = 2\& - U_0 = -2$ В (между нижней и верхней обкладками)


Задача 4. ($M\Phi T H$, 2004) В схеме, приведённой на рисунке, при разомкнутом ключе K конденсатор ёмкостью C=10 мк Φ заряжен до напряжения $U_0=2$ В. Индуктивность катушки L=0,1 Гн, ЭДС батареи $\mathscr{E}=5$ В, диод D— идеальный.

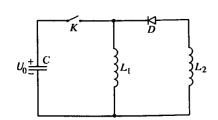
- 1) Определить максимальный ток в цепи после замыкания ключа K.
- 2) Какое напряжение установится на конденсаторе после замыкания ключа?

$$I_{max} = (U_0 + \delta U_0) = V_0 + V_0 = V_0 + V_0 = V_0 = V_0 + V_0 = V$$


Задача 5. ($M\Phi T U$, 2004) В схеме, приведённой на рисунке, при разомкнутом ключе K конденсатор ёмкостью C=30 мк Φ заряжен до напряжения $U_0=4$ В. Индуктивность катушки L=0,3 Гн, ЭДС батареи $\mathscr{E}=10$ В, диод D — идеальный.

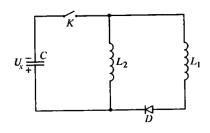
- 1) Определить максимальный ток в цепи после замыкания ключа K.
- 2) Какое напряжение установится на конденсаторе после замыкания ключа?

1)
$$I_{\text{max}} = (\& - U_0) \sqrt{\frac{C}{L}} = 60$$
 мА; 2) $U = 2\& - U_0 = 16$ В (полярность не изменится)


Задача 6. ($M\Phi T U$, 2004) В схеме, приведённой на рисунке, при разомкнутом ключе K конденсатор ёмкостью C=40 мк Φ заряжен до напряжения $U_0=5$ В. Индуктивность катушки L=0,4 Гн, ЭДС батареи $\mathscr{E}=2$ В, диод D— идеальный.

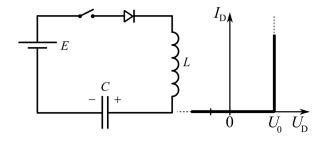
- 1) Определить максимальный ток в цепи после замыкания ключа K.
- 2) Какое напряжение установится на конденсаторе после замыкания ключа?

$$I_{max} = (U_0 + \delta) \sqrt{\frac{C}{L}} = 70$$
 мА; 2) $U = 2\delta + U_0 = 9$ (полярность противоположна начальной)


ЗАДАЧА 7. $(M\Phi T U, 1998)$ В схеме, изображённой на рисунке, катушки L_1 и L_2 закорочены через идеальный диод D. В начальный момент ключ K разомкнут, а конденсатор ёмкости C заряжен до напряжения U_0 . Через некоторое время после замыкания ключа K напряжение на конденсаторе станет равным нулю.

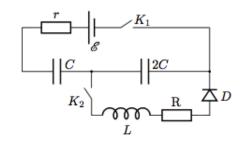
- 1) Найти ток через катушку L_1 в этот момент времени.
- Затем конденсатор перезарядится до некоторого максимального напряжения.
 - 2) Чему будут равны в этот момент токи в катушках?

$$I_{1} = I_{0} \sqrt{\frac{\mathcal{O}_{1} \mathcal{I}_{1}}{2}} = I_{1} \left(\mathcal{I} ; \frac{\mathcal{O}_{1} \mathcal{I}_{2}}{2} \right)$$


Задача 8. ($M\Phi T H$, 1998) В схеме, изображённой на рисунке, катушки с индуктивностями L_1 и L_2 и пренебрежимо малыми сопротивлениями закорочены через идеальный диод D. В начальный момент ключ K разомкнут, а конденсатор ёмкости C заряжен до неизвестного напряжения U_x . Через некоторое время τ после замыкания ключа напряжение на конденсаторе станет равным нулю, а затем конденсатор перезарядится до некоторого максимального напряжения, и в этот момент через диод D будет течь ток, равный I_0 .

- 1) Определить τ .
- 2) Определить начальное напряжение U_x .

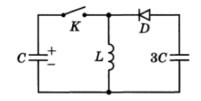
$$\boxed{ \frac{1}{\sqrt{2}\sqrt{L_2}\sqrt{L_2}} = x \text{ or } (2; \overline{\Omega}_2 \overline{L}) \sqrt{\frac{1}{2}} = \tau (1)}$$


Задача 9. («Физтех», 2020, 11) В цепи, схема которой показана на рисунке, ключ разомкнут, ЭДС идеального источника E=9 В, конденсатор емкостью C=40 мкФ заряжен до напряжения $U_1=5$ В, индуктивность идеальной катушки L=0,1 Гн. Вольтамперная характеристика диода дана на рисунке, пороговое напряжение диода $U_0=1$ В. Ключ замыкают.

- 1. Найти скорость возрастания тока сразу после замыкания ключа.
- 2. Найти максимальный ток после замыкания ключа.
- 3. Найти установившееся напряжение U_2 на конденсаторе после замыкания ключа.

I)
$$I' = \frac{E - U_1 - U_0}{L} = 30 \text{ A/c}$$
; 2) $I_{\text{max}} = (E - U_0 - U_1) \sqrt{\frac{C}{L}} = 0.06 \text{ A}$; 3) $U_2 = 2(E - U_0) - U_1 = 11 \text{ B}$

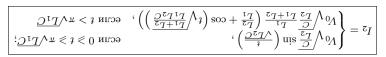
ЗАДАЧА 10. (Всеросс., 2011, РЭ, 11) Электрическая цепь состоит из идеального источника тока с ЭДС $\mathscr E$, двух конденсаторов ёмкостью C и 2C, катушки индуктивности L, сопротивлений R и r, идеального диода D и двух ключей K_1 , K_2 (см. рисунок). В начальный момент времени конденсаторы не заряжены, а ключи разомкнуты. Сначала замыкают ключ K_1 . Найдите:

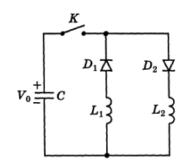

- 1) напряжение U_{2C} , установившееся на конденсаторе 2C;
 - 2) работу A, совершённую источником тока.

После того как конденсаторы зарядятся, ключ K_1 размыкают, а ключ K_2 замыкают. Затухание в получившемся RLC-контуре мало, то есть теплота, которая выделяется на резисторе R за полпериода колебаний, намного меньше начальной энергии, запасённой в конденсаторе ёмкостью 2C.

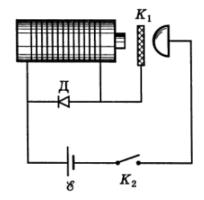
- 3) Найдите зависимость силы тока I = I(t) от времени.
- 4) Постройте соответствующий график.
- 5) Определите количество теплоты Q_R , которое выделится на резисторе.
- 6) Вычислите установившееся напряжение U_D на диоде.

$$U_{2C} = \frac{\delta}{3}; A = \frac{2}{3}C\delta^2; I = \begin{cases} \frac{2}{3}C\delta\omega\sin\omega t, & \text{echn } t < \pi/\omega, \\ 0, & \text{echn } t \geqslant \pi/\omega; \end{cases} Q_R = \frac{2}{9}\pi C^2\delta^2\omega R; U_D = -\delta/3, \text{ fig. } \omega = \frac{1}{\sqrt{2CL}}$$

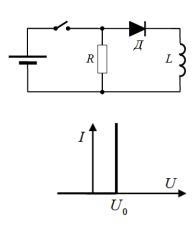

ЗАДАЧА 11. (Bcepocc., 1998, O9, 11) Цепь, показанная на рисунке, содержит два конденсатора, ёмкости которых равны C и 3C, катушку индуктивности L, идеальный диод D и ключ K. В начальный момент конденсатор ёмкости C заряжен до напряжения U_0 , конденсатор ёмкости 3C не заряжен, ключ K разомкнут, ток в катушке не течёт.



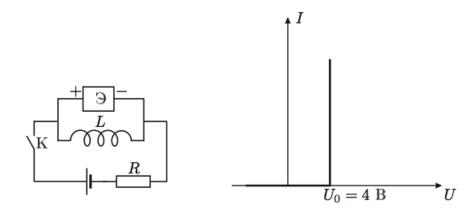
- 1) Через какое время после замыкания цепи ключом K напряжение на конденсаторе C окажется первый раз равным нулю?
- 2) Постройте графики зависимостей от времени напряжений на конденсаторах после замыкания ключа K с указанием координат характерных точек (экстремумы и нули функции). Сопротивлением катушки и соединительных проводов пренебречь.


1) $\tau = \frac{\pi}{2} \sqrt{LC}$; 2) См. конец листка

ЗАДАЧА 12. (Всеросс., 2001, финал, 11) Электрическая цепь состоит из конденсатора ёмкостью C, идеальных диодов D_1 и D_2 и катушек с индуктивностями L_1 и $L_2=4L_1$. В начальный момент ключ разомкнут, а конденсатор заряжен до напряжения V_0 (рис.). Найдите зависимость силы тока через катушку L_2 от времени после замыкания ключа и постройте график этой зависимости.

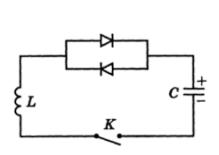


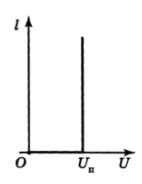
ЗАДАЧА 13. (Всеросс., 1996, финал, 11) Электромагнитное реле через ключ K_1 подключено к батарее, ЭДС которой равна $\mathscr E$. Ключ K_1 нормально замкнут и размыкается при срабатывании реле (рис.). Омическое сопротивление обмотки реле R=50 Ом, индуктивность обмотки L=0,5 Гн. Когда сила тока достигает значения $I_2=\frac{2}{3}\frac{\mathscr E}{R}$, реле срабатывает и ключ K_1 размыкается. Через некоторое время, когда сила тока в цепи реле становится равной $I_1=\frac{1}{3}\frac{\mathscr E}{R}$, ключ K_1 снова замыкается. Определите период срабатывания реле в установившемся режиме работы. Считайте диод $\mathcal I$ идеальным. Внутренним сопротивлением батареи можно пренебречь.


$$T = \frac{2L}{R} \ln 2 = 14$$
 мс

Задача 14. («Покори Воробъёви горы!», 2015, 10–11) В схеме, показанной на рисунке сверху, диод \mathcal{J} не является идеальным — его вольт-амперная характеристика показана на рисунке снизу. В некоторый момент времени, когда ток в катушке был равен нулю, ключ замкнули. Найти силу тока, который будет течь через резистор спустя достаточно большой промежуток времени. ЭДС и внутреннее сопротивление источника равны соответственно $\mathscr E$ и r, омическое сопротивление катушки равно по величине внутреннему сопротивлению источника, сопротивление резистора R и пороговое напряжение диода U_0 считать известными.

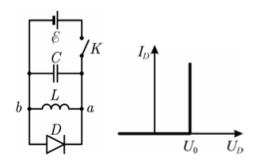
$$I_R = \begin{cases} \frac{\delta}{R+V_0}, & \text{ecur } \delta < U_0 \left(1+\frac{R}{R}\right); \\ \frac{\delta+U_0}{2R+V_0}, & \text{ecur } \delta \geqslant U_0 \left(1+\frac{R}{R}\right); \end{cases}$$


Задача 15. (Bcepocc., 2003, финал, 11) В цепи (рис. слева) электродвижущая сила источника $\mathscr{E}=12$ В, сопротивление резистора R=4 Ом, индуктивность катушки L=0,5 Гн, а нелинейный элемент $\mathscr G$ имеет известную вольт-амперную характеристику I(U) (рис. справа). В начальный момент ключ K разомкнут, ток в катушке не течёт.



- 1) Какое количество теплоты выделится на нелинейном элементе после замыкания ключа?
- 2) Построить качественный график зависимости тока в катушке от времени. Укажите характерные точки на графике. Внутренним сопротивлением источника пренебречь.

жД
$$1 = \frac{c_{(0}U - \mathcal{S})J}{c_{\mathcal{R}\mathcal{L}}} = \mathcal{Q}$$


Задача 16. (Всеросс., 1994, финал, 11) В колебательный контур, состоящий из катушки индуктивности L=0,1 Гн и конденсатора ёмкости C=10 мкФ, включён «электронный ключ», составленный из двух одинаковых диодов (рис. слева). Вольт-амперная характеристика диодов показана на рисунке справа. Пороговое напряжение, при котором диод открывается, $U_{\rm n}=0,7$ В. Перед замыканием ключа K напряжение на конденсаторе равно $U_0=4,5$ В. Через какое время после замыкания ключа K колебания в контуре прекратятся и установится стационарный режим? Чему будет равно установившееся (остаточное) напряжение на конденсаторе? Постройте график зависимости напряжения U_0 на конденсаторе от времени.

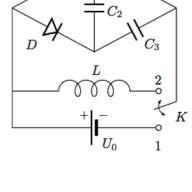
 $\tau = 3\pi\sqrt{LC} = 9,42$ мс; $U_C = -0,3$ В; См. конец листка

Задача 17. (MOIII, 2014, 11) В цепи, схема которой изображена на рисунке, катушка имеет индуктивность L, ёмкость конденсатора равна C, сопротивление источника, активное сопротивление катушки и сопротивления проводов пренебрежимо малы. Вольт-амперная характеристика диода D изображена на графике (I_D — сила текущего через диод тока; $U_D = \varphi_b - \varphi_a$, где φ_a и φ_b — потенциалы соответствующих точек цепи). В начальный момент ключ K разомкнут, а конденсатор C не заряжен. Ключ K замыкают на время $t_0 < \sqrt{LC}$, а затем снова размыкают. Определите отношение ЭДС источника $\mathscr E$ к напряжению U_0 , при

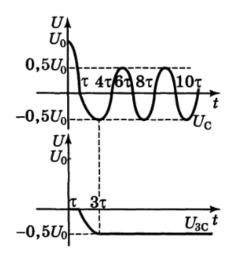
котором открывается диод, если заряд, прошедший через диод после размыкания ключа, в n раз больше заряда, прошедшего через катушку за время t_0 , пока ключ был замкнут.

$$\boxed{\frac{\left(\mathcal{O}_{1}+\mathcal{O}_{1}^{2}\right)_{\mathcal{I}}}{\left(\mathcal{O}_{1}+\mathcal{O}_{1}^{0}\right)_{\mathcal{I}}+\mathcal{I}_{1}\mathcal{O}_{1}^{2}}=\frac{\mathcal{O}_{1}}{\mathscr{D}}}}$$

ЗАДАЧА 18. (Всеросс., 2019, финал, 11) Электрическая схема состоит из трех конденсаторов C_1 , C_2 , C_3 одинаковой емкости C, катушки с индуктивностью L, двух идеальных диодов, источника постоянного напряжения U_0 , ключа K (рис.). Первоначально перед замыканием ключа конденсаторы не заряжены. Затем ключ переводят в положение 1, и, после установления равновесия, переключает в положение 2.


- 1) Чему равны напряжения на конденсаторах U_1 , U_2 и U_3 перед переключением ключа в положение 2?
- 2) Чему равно максимальное значение I_D тока через диоды после переключения ключа в положение 2?
 - 3) В каких пределах

$$\left(\left[U_1^{\min},\ U_1^{\max}\right],\, \left[U_2^{\min},\ U_2^{\max}\right],\, \left[U_3^{\min},\ U_3^{\max}\right]\right)$$


изменяются напряжения на конденсаторах после переключения ключа в положение 2?

- 4) Качественно изобразите график зависимости силы тока I, протекающего через индуктивность, от времени.
 - 5) Чему равен период колебаний T тока I? Активным сопротивлением индуктивности и проводов можно пренебречь.

$$\boxed{\frac{\Sigma L}{\varepsilon} \sqrt{\pi \Omega} = T \left(\tilde{\sigma} : \left[0 \tilde{U} : \frac{0 U}{\varepsilon} \right] : \left[0 \tilde{U} : \frac{0 U \tilde{U}}{\varepsilon} : 0 \tilde{U} \right] : \left[0 \tilde{U} : \frac{0 U}{\varepsilon} \right] \left(\tilde{E} : 0 \right) \left(\tilde{E} : 0 \right$$

Ответ к задаче 11

Ответ к задаче 16

