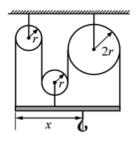

Всероссийская олимпиада школьников по физике

9 класс, муниципальный этап, 2014/15 год

Задача 1. По комнате движутся во взаимно перпендикулярных направлениях школьница Ирина и шкаф на колёсиках, причём шкаф удаляется от Ирины. На шкафу расположено плоское зеркало, в котором Ирина видит своё изображение. Скорости шкафа и Ирины относительно комнаты равны соответственно $v_1 = 1,5 \text{ м/c}$ и $v_2 = 2 \text{ м/c}$. Найдите модуль скорости изображения Ирины

- а) относительно зеркала;
- б) относительно комнаты;
- в) относительно Ирины.

a)
$$v_3 = \sqrt{v_1^2 + v_2^2} = 2,5$$
 M/c; 6) $v_1 = \sqrt{4v_1^2 + v_2^2} \approx 3,6$ M/c; b) $v_1 = 2v_1 = 3$ M/c


Задача 2. Газон поливают из шланга, направляя струю под углом $\alpha=60^\circ$ к горизонту. Определите диаметр d струи в верхней точке траектории, если внутренний диаметр шланга равен $d_0=1$ см, а струя в процессе движения не распадается на капли. Считать, что диаметр шланга много меньше высоты подъёма.

Mo
$$f_{\rm c} 1 \approx \frac{0p}{\log \log p} = p$$

ЗАДАЧА 3. В воде плавает пустая плоская прямоугольная коробка (без крышки) с площадью поперечного сечения 100 cm^2 . После того как в середину коробки положили брусок объёмом 75 cm^3 , она погрузилась ещё на 3 см. Определите плотность бруска. Какую плотность должен иметь брусок объёмом 150 cm^3 , чтобы коробка с одним таким бруском утонула? Масса коробки 100 г, а её высота 13 см. Плотность воды 1000 кг/м^3 .

4 г/см 3 ; не менее 8 г/см 3

Задача 4. В системе, изображённой на рисунке, блоки, нить и стержень невесомы. Правый блок в два раза больше по размеру, чем другие два. Участки нитей, не лежащие на блоках, вертикальны. На крючок повесили груз некоторой массы, при этом система осталась неподвижна. Определите, чему равно отношение x/r.

3,5

Задача 5. Электрокипятильник, включённый в сеть с напряжением $U=220~{\rm B}$, нагревает воду в кастрюле от комнатной температуры до кипения за время $\tau_1=1~{\rm mun}$. Найдите, за какое время τ_2 четыре кипятильника с втрое большим сопротивлением, соединённые последовательно, нагреют вдвое большую массу воды от той же комнатной температуры до кипения при подключении к сети с напряжением $2U=440~{\rm B}$. Потерями теплоты можно пренебречь.

$$_{72} = 67_1 = 6$$
 мин