
Всероссийская олимпиада школьников по физике

11 класс, заключительный этап, 2005/06 год

Задача 1. Пушечный снаряд массой M=100 кг разорвался в некоторой точке траектории на два осколка, разлетевшихся с импульсами $p_1=3,6\cdot 10^4$ кг·м/с и $p_2=2,4\cdot 10^4$ кг·м/с. Импульсы осколков направлены под углом $\alpha=60^\circ$ друг к другу. Определите, при каком отношении масс осколков выделившаяся при взрыве кинетическая энергия будет минимальной. Найдите эту энергию.

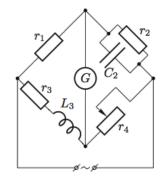
мДм 2
$$\xi$$
, $t = \frac{2}{10}$; $\Delta K_{\min} = \frac{2}{10}$ (1 – $\cos \alpha$) $\Delta K_{\min} = \frac{2}{10}$

Задача 2. Круглый вертикальный цилиндр радиусом R прикреплён к горизонтальной плоскости (рис.). Внизу с боковой поверхностью цилиндра соединена нерастяжимая нить длиной L, направленная по касательной к поверхности цилиндра. На другом конце нити закреплена маленькая шайба. Шайбе сообщают горизонтальную ско-

рость v_0 , направленную перпендикулярно нити, и шайба начинает скользить по плоскости.

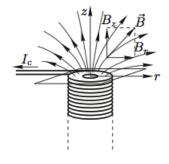
- 1) Сколько времени будет продолжаться движение шайбы (наматывание нити на цилиндр) в отсутствие трения?
- 2) Сколько времени будет продолжаться движение шайбы при наличии трения между шайбой и плоскостью? Коэффициент трения равен μ .

Задача 3. На рисунке изображена система, состоящая из баллона объёмом $V_0=0.2~{\rm m}^3$ и цилиндра с поршнем. Начальный объём баллона и цилиндра $V_1=kV_0$, где k=2.72. В системе находится воздух под давлением $p_0=10^5~{\rm Ha}$ и при температуре $T_0=300~{\rm K}$, равной температуре наружного воздуха. Передвигая поршень, весь воздух из цилиндра закачивают в баллон. Опреде-



- лите количество теплоты, которое передаётся окружающей среде в следующих двух случаях.
- 1) Поршень передвигается медленно, так что в каждый момент времени вся система находится в тепловом равновесии с окружающей средой.
- 2) Поршень передвигается достаточно быстро, так что за время его перемещения можно пренебречь теплообменом с окружающей средой, но воздух внутри системы в каждый момент времени находится в равновесном состоянии. После завершения процесса перекачки темепратура воздуха в баллоне постепенно сравнивается с темпертурой окружающего воздуха.

Примечание. Адиабатический процесс описывается уравнением $pV^{\gamma}=\mathrm{const},$ где параметр $\gamma=7/5.$


1)
$$Q_1 = p_0 V_0 k \ln k = 54,4$$
 кДж; 2) $Q_2 = \frac{p_0 V_0 k}{\gamma - 1} (k \gamma^{-1} - 1) = 66,9$ кДж

ЗАДАЧА 4. Для определения ёмкости C_2 и сопротивления утечки r_2 конденсатора собрана мостовая схема (рис.), которая сбалансирована при подключении гармонического переменного напряжения. Оказалось, что баланс моста не нарушается при любом изменении частоты напряжения. Чему равны параметры C_2 и r_2 , если известно, что $r_1=2500$ Ом, $r_3=10$ Ом, $L_3=1$ Гн, $r_4=800$ Ом? Гальванометр измеряет действующее значение силы тока.

$$\Phi$$
 мкр δ , $\theta = \frac{\Gamma_1 \Gamma_4}{3} = 200$ кОм; $\theta = \frac{\Gamma_3}{3} = 20$

Задача 5. У торца вертикально расположенного длинного соленоида на тонком немагнитном листе лежит соосно с соленоидом круглое тонкое кольцо из сверхпроводника (рис.). В начальном состоянии сила тока в витках соленоида и сила тока в кольце равны нулю. При протекании тока по виткам соленоида вблизи торца возникает неоднородное магнитное поле. Вертикальную B_z и радиальную B_r составляющие вектора магнитной индукции \vec{B} можно в некоторой ближней области задать с помощью соотношений $B_z \approx B_0(1-\alpha z)$, $B_r \approx B_0 \beta r$, где α и β — некоторые константы, а B_0 определяется силой тока в соленоиде. По виткам соленоида начинают пропускать ток силой I, постепенно увеличивая его значение. Определите:

- 1) критическое значение силы тока I_0 в соленоиде, при котором кольцо начинает подниматься над опорой;
 - 2) высоту кольца над опорой при $I = 2I_0$;
 - 3) частоту малых колебаний сверхпроводящего кольца при $I=2I_0$.

Числовые данные: $\alpha=36~{\rm m}^{-1},~\beta=18~{\rm m}^{-1},$ масса кольца $m=100~{\rm mr},$ коэффициент самоиндукции кольца $L=1.8\cdot 10^{-8}~{\rm \Gamma h},$ площадь кольца $S=1~{\rm cm}^2,$ магнитная постоянная $\mu_0=1.257\cdot 10^{-6}~{\rm \Gamma h/m},$ плотность намотки соленоида $n=10^3~{\rm m}^{-1}.$

и Т
$$0.0 = \frac{28.5 \text{ V}}{\pi} = \frac{10.00 \text{ M}}{\pi} = 1.1 \text{ A}; \text{ Z} = \frac{3}{60.0} = 2.08 \text{ CM}; \text{ 3} = 0.5 \text{ (Z ; A I, II } = \frac{10.00 \text{ M}}{60.00 \text{ M}} = 0.1 \text{ (I I)}$$