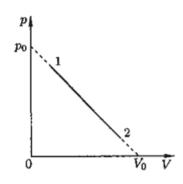

Всероссийская олимпиада школьников по физике

11 класс, заключительный этап, 2004/05 год

Задача 1. Предположим, что в результате какой-то космической катастрофы Луна остановилась в своём орбитальном движении вокруг Земли. Определите, сколько времени τ Луна будет падать на Землю и с какой относительной скоростью v планеты столкнутся. Расстояние от Земли до Луны $L=3.84\cdot 10^5$ км, радиус Земли R=6370 км. Массу и размер Луны можно считать малыми по сравнению с массой и размером Земли.

ЗАДАЧА 2. В состоянии равновесия идеальный двухатомный газ занимает ровно половину объёма теплоизолированного сосуда с массивным теплоизолированным поршнем. На поршень поставили гирю (рис.). Когда система пришла в новое состояние термодинамического равновесия, оказалось, что давление газа возросло на 25%. Затем гирю быстро сняли и вновь дождались наступления равновесного состояния. Сколько таких циклов n установки и снятия гири можно совершить, пока поршень не вылетит из цилиндра при очередном удалении гири? Считайте, что трение между поршнем и стенками цилиндра пренебрежимо мало. Внешним давлением можно пренебречь.



$$89 = \left\lfloor \frac{\frac{2}{86} \text{ nl}}{\frac{2}{80} \text{ nl}} \right\rfloor \geqslant n$$

Задача 3. Разрабатывая кинетическую теорию газов, Клаузиус ввёл в уравнение состояния идеального газа (в расчёте на 1 моль) поправку b, которая имеет смысл собственного объёма молекул газа:

$$p(V - b) = RT.$$

Процесс 1–2 (рис.) производится сначала с одним молем идеального газа, а затем с одним молем газа Клаузиуса. Найдите разность ΔT максимальных температур газов в этих опытах, а также укажите, какая из их больше.

Известно, что $p_0=1.51~\mathrm{M\Pi a},\,b=44~\mathrm{cm}^3/\mathrm{моль}\ll V_0,\,R=8.310~\mathrm{Дж/(моль\cdot K)}.$

$$A = T_1 - T_2 = T_1 = T$$

Задача 4. Сверхпроводящий соленоид длиной l=10 см и площадью поперечного сечения S=1,6 см² имеет N=1000 витков. В некоторый момент соленоид подключают к источнику с ЭДС $\mathscr E=24$ В и внутренним сопротивлением r=0,2 Ом. Известно, что при индукции магнитного поля $B_0=1,26$ Тл состояние сверхпроводимости обмотки соленоида разрушается. Определите, перейдёт ли в этом эксперименте обмотка соленоида из сверхпроводящего в нормальное состояние, и если да, то через какое время t_0 после подключения, а если нет, то при какой ЭДС $\mathscr E$ источника переход бы произошёл. Магнитная постоянная $\mu_0=4\pi\cdot 10^{-7}$ единиц СИ.

$$\log 81 \approx \left(\frac{\eta_0 H}{3N_0 4} - 1\right) \text{m} \left(\frac{2 \eta_0 4}{\eta_1} - 1\right) \approx 18 \text{ m}$$

Задача 5. Цинковый шарик радиусом R=1 см расположен в вакууме вдали от других тел и заряжен до потенциала $\varphi_0=-0.5$ В (полагая на бесконечности $\varphi=0$). Шарик осветили монохроматическим ультрафиолетовым светом с длиной волны $\lambda=290$ нм.

- 1) С какой максимальной скоростью v_1 вылетают фотоэлектроны из шарика?
- 2) Какую максимальную скорость v_2 будут иметь на большом расстоянии от шарика фотоэлектроны, вылетевшие из него в начале опыта?
 - 3) Найдите потенциал φ_1 шарика после продолжительного облучения.
- 4) Какое число N фотоэлектронов покинет шарик при продолжительном облучении ультрафиолетом?

Красная граница фотоэффекта для цинка $\lambda_0=332$ нм. Скорость света $c=3.0\cdot 10^8$ м/с. Постоянная Планка $h=6.63\cdot 10^{-34}$ Дж \cdot с. Электрическая постоянная $\varepsilon_0=8.85\cdot 10^{-12}$ Ф/м. Заряд электрона $e=-1.6\cdot 10^{-19}$ Кл. Масса электрона $m=9.1\cdot 10^{-31}$ кг.

См. конец листка

Ответ к задаче 5

1)
$$v_1 = \sqrt{\frac{2hc}{m} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)} \approx 4.37 \cdot 10^5 \text{ m/c};$$

2)
$$v_2 = \sqrt{v_1^2 + \frac{2e\varphi_0}{m}} \approx 6.05 \cdot 10^5 \text{ m/c};$$

3)
$$\varphi_1 = -\frac{mv_1^2}{2e} \approx +0.54 \text{ B};$$

4)
$$N = \frac{4\pi\varepsilon_0}{-e}R(\varphi_1 - \varphi_0) \approx 7.2 \cdot 10^6$$
.