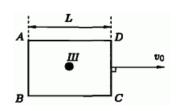
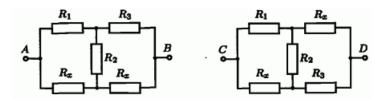

Всероссийская олимпиада школьников по физике

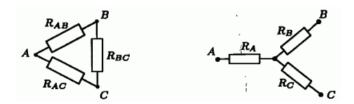
9 класс, федеральный окружной этап, 2002/03 год


Задача 1. Исследуется зависимость тормозного пути S_T , который проходит материальная точка при прямолинейном движении в однородной среде с неизвестными свойствами, от начальной скорости материальной точки v. График этой зависимости имеет вид, показанный на рисунке.

Какой путь проходит материальная точка за время торможения от скорости $v_1 = 4 \text{ м/c}$ до $v_2 = 3,99 \text{ м/c}$? За какое время она проходит этот путь? Чему равно ускорение материальной точки при скорости $v_1 = 4 \text{ м/c}$? Действие всех сил на материальную точку, кроме силы сопротивления среды, скомпенсировано.

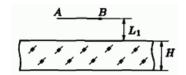
5,5 см; 6,25 мс; 1,6 м/с


Задача 2. На горизонтальной поверхности лежит прямоугольная рамка, у которой короткие стенки отстоят друг от друга на расстояние L. Внутри рамки покоится маленькая шайба Ш. Рамку начинают двигать по поверхности с постоянной скоростью v_0 (рис.). Определите интервал времени между двумя последовательными столкновениями шайбы с задней стенкой AB рамки. Коэффициент трения между шайбой Ш и горизонтальной по-


верхностью равен μ , а удар шайбы о стенки рамки считайте абсолютно упругим.

$$= \left\{ \frac{\frac{2v_0}{v_0}}{v}, \frac{v_0}{v} = \frac{v_0}{v_0}, \frac{v_0}{v_0} = \frac{v_0}{v_0} = \frac{v_0}{v} = \frac{v_0}{v} = \frac{v_0}{v} = \frac{v_0}{v_0} = \frac{v_0}{v} = \frac{v_0}{$$

ЗАДАЧА 3. В электрических цепях (рис.) сопротивление R_{AB} между зажимами A и B и сопротивление R_{CD} между зажимами C и D равны, а сопротивления резисторов R_1 , R_2 и R_3 — заданы. Найдите все возможные значения сопротивления R_x . Докажите, что других решений нет.


Примечание. Вы можете воспользоваться тем фактом, что для всякой схемы из трёх резисторов, соединённых «треугольником» (нижний левый рисунок), существует эквивалентная схема из трёх резисторов, соединённых «звездой» (нижний правый рисунок).

 $R_x = R_1$ или $R_x = R_3$

Задача 4. В шестидесятых годах прошлого века группа советских физиков во главе с доктором физико-математических наук Виктором Георгиевичем Веселаго занималась поиском веществ, обладающих отрицательным показателем преломления. Поведение таких веществ было рассмотрено теоретически в статье, опубликованной в 1967 г. в журнале «Успехи физических наук» (том 92). В частности, в статье было показано, что остаётся справедливым закон преломления Снелля ($n_1 \sin \varphi_1 = n_2 \sin \varphi_2$, где φ_1 — угол падения, φ_2 — угол преломления, а n_1 и n_2 — соответствующие показатели преломления). При этом плоскопараллельная пластинка может при некоторых условиях быть идеальной «линзой». К сожалению, тогда найти вещества с такими свойствами не удалось. Однако в 2000 году группой физиков из университета Сан-Диего были созданы композитные материалы, обладающие отрицательным показателем преломления...

Над прозрачной плоскопараллельной пластинкой, обладающей отрицательным показателем преломления n=-1, находится светящаяся стрелка AB (рис.). Расстояние от неё до пластинки $L_1=6$ см, толщина пластинки H=10 см. Под пластинкой возникает изображение A'B' стрелки AB. Покажите построением, как получается это изображение. На каком расстоянии L_2 от нижней

стороны плоскопараллельной пластинки будет находиться изображение A'B'? Действительным или мнимым будет это изображение? Найдите увеличение k, даваемое такой пластинкой в рассматриваемом случае. Будет ли это изображение единственным во всём пространстве? Отражения от границ раздела пластинка—воздух не учитывать.

 $L_2 = H - L_1 = 4$ см; действительное; k = 1; будет два изображения