Олимпиада «Высшая проба» по математике

11 класс, 2017 год

Все задачи оценивались в 20 баллов. Для получения диплома нужно было набрать от 40 баллов.

- **1.** В компании из 6 человек некоторые компаниями по трое ходили вместе в походы. Верно ли, что среди них найдутся четверо, среди которых каждые трое ходили вместе в поход, либо четверо, где никакие трое не ходили вместе в поход?
- **2.** На окружности с центром O расположим шестёрку точек P_1, \ldots, P_6 . Назовём шестёрку интересной, если $\overrightarrow{OP_1} + \ldots + \overrightarrow{OP_6} = 0$ и все углы $\angle P_i O P_j$ целые в градусах. Назовём шестёрку скучной, если она переводится в себя отражением от точки O или поворотом вокруг O на 120° . Существуют ли интересные нескучные шестёрки точек на окружности?
- **3.** Выпуклый многогранник имеет 8 вершин и 6 четырёхугольных граней. Может ли проекция этого многогранника на некоторую плоскость оказаться правильным 8-угольником?
- **4.** Тройка целых чисел (x,y,z), наибольший общий делитель которых равен 1, является решением уравнения

$$y^2z + yz^2 = x^3 + x^2z - 2xz^2.$$

Докажите, что z является кубом целого числа.

5. Числа P_1, \ldots, P_n являются перестановкой чисел $\{1, \ldots, n\}$ (то есть каждое P_i равно одному из $1, \ldots, n$ и все P_i различны). Докажите неравенство

$$\sum_{i=1}^{n-1} \frac{1}{P_i + P_{i+1}} > \frac{n-1}{n+2}.$$

6. Высоты AA_1 , BB_1 , CC_1 остроугольного треугольника ABC пересекаются в точке H. Пусть M — середина стороны BC, K — середина B_1C_1 . Докажите, что окружность, проходящая через K, H и M, касается AA_1 .