Объединённая межвузовская математическая олимпиада (ОММО)

11 класс, 2016 год

Задача 1. Представьте в виде несократимой дроби

$$7\frac{19}{2015} \times 6\frac{19}{2016} - 13\frac{1996}{2015} \times 2\frac{1997}{2016} - 9 \times \frac{19}{2015}$$
.

96/61

Задача 2. В 1^а классе каждого ребёнка попросили написать два числа: количество его одноклассников и количество его одноклассниц (именно в таком порядке; сам себя ребёнок не считает). Каждый ребёнок одно число написал правильно, а в другом ошибся ровно на 2. Среди ответов были получены такие: (13, 11), (17, 11), (14, 14). Сколько мальчиков и сколько девочек в классе?

15 мальчиков и 12 девочек

Задача 3. При каких натуральных n>1 найдутся n подряд идущих натуральных чисел, сумма которых равна 2016?

89 '17 '6 '2 '8

Задача 4. В треугольнике ABC с отношением сторон AB:AC=5:4 биссектриса угла BAC пересекает сторону BC в точке L. Найдите длину отрезка AL, если длина вектора $4 \cdot \overrightarrow{AB} + 5 \cdot \overrightarrow{AC}$ равна 2016.

777

Задача 5. Решите систему уравнений

$$\begin{cases} x^2 - xy + y^2 = 19, \\ x^4 + x^2y^2 + y^4 = 931. \end{cases}$$

 $(\xi-,\xi-)$; $(\xi-,\xi-)$; (ξ,ξ) ; $(\xi,\xi-)$

Задача 6. Вычислите $2 \arctan 2 + \arcsin \frac{4}{5}$.

ш

Задача 7. Пусть OP — диаметр окружности Ω , ω — окружность с центром в точке P и радиусом меньше, чем у Ω . Окружности Ω и ω пересекаются в точках C и D. Хорда OB окружности Ω пересекает вторую окружность в точке A. Найдите длину отрезка AB, если $BD \cdot BC = 5$.

<u>5</u>\

Задача 8. При каких значениях параметра a уравнение $x^3 + ax^2 + 13x - 6 = 0$ имеет единственное решение?

$$\left(\frac{18}{8}; \frac{10}{8}, -\right) \cup (8-; \infty -)$$

Задача 9. Федерация спортивной борьбы присвоила каждому участнику соревнования квалификационный номер. Известно, что во встречах борцов, квалификационные номера которых отличаются более чем на 2 номера, всегда побеждает борец с меньшим номером. Турнир для 256 борцов проводится по олимпийской системе: в начале каждого дня бойцы разбиваются на пары, проигравший выбывает из соревнований (ничьих не бывает). Какой наибольший квалификационный номер может иметь победитель?

91

Задача 10. Сторона основания правильной четырёхугольной пирамиды равна a, а высота — a/2. Найдите объём тела, ограниченного поверхностью этой пирамиды и сферами радиуса a/3 с центрами в вершинах основания этой пирамиды.

 $\epsilon_{n} \frac{\pi^{h-18}}{88^{h}}$