Механико-математический факультет МГУ

Олимпиада «Абитуриент-2000», март

1. Решить неравенство

$$\frac{|x-4|-|x-1|}{|x-3|-|x-2|} < \frac{|x-3|+|x-2|}{|x-4|}.$$

 $(7;4) \cup (4;8)$

2. О первых семи членах убывающей арифметической прогрессии известно, что сумма пятых степеней всех этих членов равна нулю, а сумма их четвертых степеней равна 51. Найти седьмой член этой прогрессии.

3. Найти все корни уравнения

$$\cos x \sin \frac{x}{4} + \frac{9}{10} \sin x + 2 \sin \frac{x}{4} \cos \frac{x}{2} + \sin \frac{x}{4} - \frac{1}{2} \cos \frac{x}{4} - \frac{9}{20} = 0,$$

принадлежащие отрезку $\left[-\frac{9}{2}\pi; -\frac{3}{2}\pi\right]$.

$$-\frac{23\pi}{6}$$
, $-\frac{19\pi}{6}$, $-\frac{11\pi}{6}$, $-\frac{1}{6}$ arccos $\left(-\frac{9}{10}\right)$

4. Перпендикуляр к боковой стороне AB трапеции ABCD, проходящий через ее середину K, пересекает сторону CD в точке L. Известно, что площадь четырехугольника AKLD в пять раз больше площади четырехугольника BKLC, CL=3, DL=15, KC=4. Найти длину отрезка KD.

50

5. При каких значениях параметра a уравнение

$$\left(\left(\frac{3}{2} \right)^x + \left(\frac{3}{2} \right)^{a-x} - \frac{3}{5} \left(\frac{3}{2} \right)^a - \frac{8}{5} \right) \cdot \left(\left(\frac{3}{2} \right)^{2x-2} + \left(\frac{3}{2} \right)^{2a-2x-3} - 4 \left(\frac{3}{2} \right)^{2a-5} + 2 \right) = 0$$

имеет хотя бы одно решение и каждое его решение является целым числом?

 $\frac{3}{5}$;I

6. Вершины квадрата PQRS со стороной $\frac{25}{4}$ лежат на сфере. Параллельные друг другу прямые проходят через точки $P,\ Q,\ R$ и S и повторно пересекают сферу в точках $P_1,\ Q_1,\ R_1$ и S_1 соответственно. Известно, что $PP_1=2,\ QQ_1=10,\ RR_1=6.$ Найти длину отрезка $SS_1.$

7