Открытая олимпиада Физтех-лицея 2015

Математика, 9 класс

1. Про некоторое натуральное число x известно, что $41^{41^{42}}=x^x$. Сколько различных простых делителей имеет x?

I

2. Дан прямоугольный треугольник ABC с гипотенузой AC. Известно, что $\angle BAC=18^\circ$. Обозначим через M середину отрезка AC. Рассмотрим точку C_1 , симметричную точке C относительно прямой BM. Найдите угол BC_1A .

801

3. Сколькими способами можно выбрать из 10 человек группу для участия в эксперименте, состоящую из по крайней мере одного человека (в группе может быть любое число человек от 1 до 10)?

1023

4. Дана равнобедренная трапеция ABCD с основаниями BC = 7 и AD = 143. Через точку C проведена прямая, перпендикулярная AD и пересекающая отрезок AD в точке P. Найдите DP.

89

5. Пусть a_1, a_2, \ldots последовательность, определяемая следующим образом:

$$a_1 = 1$$
, $a_{n+1} = \sqrt{a_n^2 - 4a_n + 6} + 2$.

Найдите a_{481} .

58

6. В треугольнике ABC угол B равен 120° . На стороне AC выбраны точки E и D такие, что AD=AB и CE=CB. Найдите угол EBD.

30

7. Пусть a и b — действительные числа, удовлетворяющие уравнениям $a^4 + a^2b^2 + b^4 = 819$, $a^2 + ab + b^2 = 21$. Найдите значение 2ab.

81-

8. Найдите число таких пар (x,y), что $x,y \in \mathbb{N}, x < y \leqslant 1300$ и $HOД(y^2 - x^2, y^3 - x^3) = 1$.

1599

9. Дан равнобедренный прямоугольный треугольник ABC с гипотенузой AC. На гипотенузе AC выбраны точки K и L, а на сторонах AB и BC выбраны точки N и M соответственно так, что четырёхугольник KLMN является квадратом. Известно, что AC=237. Найдите сторону квадрата.

64

10. Натуральные числа x, y, z, меньшие 100, удовлетворяют уравнениям

$$1099x + 901y + 1110z = 91314$$
, $109x + 991y + 101z = 19649$.

Найдите 10000x + 100y + z.

481225

11. Найдите число таких подмножеств X множества $\{1, 2, \dots, 15\}$, что никакие два элемента X не отличаются на 1.

469T

12. Пусть a_n — остаток от деления $(n+1)^3$ на n^3 . Найдите остаток при делении числа

$$a_1 + a_2 + \ldots + a_{2004}$$

на 2000.

₹2

- 13. Есть колода карточек, пронумерованных от 1 до 2000. Эту колоду перемешали и теперь играют в игру. Каждый шаг этой игры состоит из двух действий:
 - 1) верхнюю карту кладём вниз колоды;
- 2) ту карту, которая после первого действия стала верхней, перекладываем вниз другой колоды (изначально другая колода пустая).

Оказалось, что после игры карты во второй колоде расположились следующем порядке: 1, 2, 3, 4, ..., 2000. Какая карта лежала вверху первой колоды в самом начале?

8861

14. Дана окружность ω радиуса 20, в которой проведён диаметр AB. На отрезке AB взята точка P на расстоянии 4 от центра окружности ω . Найдите радиус окружности, которая касается отрезка AB в точке P и внутренним образом касается окружности ω .

96

15. Дан треугольник ABC. На прямой AC взяты точки X и Y, отличные от точек A и C, так, что XA = AC = CY. На прямой BC взяты точки K и L, отличные от точек B и C, так, что KB = BC = CL. На прямой AB взяты точки M и N, отличные от точек A и B, так, что MA = AB = BN. Оказалось, что вокруг шестиугольника XKNYLM можно описать окружность. Известно что, периметр треугольника ABC равен $12\sqrt{\frac{3}{7}}$. Найдите радиус описанной вокруг шестиугольника XKNYLM окружности.

 \overline{V}

16. Дана последовательность целых чисел $0 \le a_1 \le a_2 \le \ldots \le a_{19}$. Пусть $b_n = m$, если a_m — первый член последовательности, который больше или равен n. Известно, что $a_{19} = 33$. Какое наибольшее значение принимает число $a_1 + \ldots + a_{19} + b_1 + \ldots + b_{33}$?

099

17. Дан правильный 18-угольник $A_1A_2 \dots A_{18}$. На его соседних сторонах $A_{18}A_1$ и A_1A_2 выбраны точки X и Y соответственно. Оказалось, что $A_{18}X = A_1Y = 3$ и $XA_1 = YA_2 = 4$. Найдите сумму углов, под которыми виден отрезок XY из всех вершин данного 18-угольника, за исключением вершины A_1 , т. е. сумму $\angle XA_2Y + \angle XA_3Y + \dots + \angle XA_{18}Y$.

091

18. Пусть про числа $a_1, a_2, \ldots, a_{200}$ известно, что

$$0 \le a_1 \le a_2 \le \ldots \le a_{200}, \quad a_1 + a_2 + \ldots + a_{198} \le 50, \quad a_{199} + a_{200} \le 50.$$

Укажите наибольшее значение a_{199} при наибольшем значении $a_1^2+a_2^2+\ldots+a_{200}^2$.

25

19. Пусть S — множество делителей числа 2541^{80} . Обозначим через T подмножество S, в котором нет двух элементов, один из которых делится на другой. Какое наибольшее число элементов может быть в множестве T?

1999

20. Найдите количество пар целых чисел (m,n) таких, что $-888 \leqslant m,n \leqslant 888$ и уравнение $x^3+y^3=m+3nxy$ имеет бесконечно много целых решений (x,y).

61