Открытая олимпиада Физтех-лицея 2015

Математика, 10 класс

1. Про некоторое натуральное число x известно, что $53^{53^{54}}=x^x$. Сколько различных простых делителей имеет x?

I

2. Дан прямоугольный треугольник ABC с гипотенузой AC. Известно, что $\angle BAC=20^\circ$. Обозначим через M середину отрезка AC. Рассмотрим точку C_1 , симметричную точке C относительно прямой BM. Найдите угол BC_1A .

110

3. Сколькими способами можно выбрать из 10 человек группу для участия в эксперименте, состоящую из по крайней мере одного человека (в группе может быть любое число человек от 1 до 10)?

1023

4. Дана равнобедренная трапеция ABCD с основаниями BC = 7 и AD = 143. Через точку C проведена прямая, перпендикулярная AD и пересекающая отрезок AD в точке P. Найдите DP.

89

5. Пусть a_1, a_2, \ldots последовательность, определяемая следующим образом:

$$a_1 = 1$$
, $a_{n+1} = \sqrt{a_n^2 - 2a_n + 3} + 1$.

Найдите a_{51} .

ΙΙ

6. Найдите число таких пар (x, y), что $x, y \in \mathbb{N}, x < y \le 1200$ и $HOД(y^2 - x^2, y^3 - x^3) = 1$.

6611

7. Дан равнобедренный прямоугольный треугольник ABC с гипотенузой AC. На гипотенузе AC выбраны точки K и L, а на сторонах AB и BC выбраны точки N и M соответственно так, что четырёхугольник KLMN является квадратом. Известно, что AC=1023. Найдите сторону квадрата.

148

8. Натуральные числа x, y, z, меньшие 100, удовлетворяют уравнениям

$$1099x + 901y + 1110z = 58103$$
, $109x + 991y + 101z = 11956$.

Найдите 10000x + 100y + z.

817048

9. Пусть a_n — остаток от деления $(n+1)^3$ на n^3 . Найдите остаток при делении числа

$$a_1 + a_2 + \ldots + a_{3003}$$

на 3000.

13

- **10.** Есть колода карточек, пронумерованных от 1 до 4000. Эту колоду перемешали и теперь играют в игру. Каждый шаг этой игры состоит из двух действий:
 - 1) верхнюю карту кладём вниз колоды;
- 2) ту карту, которая после первого действия стала верхней, перекладываем вниз другой колоды (изначально другая колода пустая).

Оказалось, что после игры карты во второй колоде расположились следующем порядке: 1, 2, 3, 4, ..., 4000. Какая карта лежала вверху первой колоды в самом начале?

8868

11. Дана окружность ω радиуса 5, в которой проведён диаметр AB. На отрезке AB взята точка P на расстоянии 3 от центра окружности ω . Найдите радиус окружности, которая касается отрезка AB в точке P и внутренним образом касается окружности ω .

9,1

12. Точки A_1 , A_2 , A_3 , A_4 , A_5 лежат на одной окружности в указанном порядке. Расстояния от точки A_1 до прямых A_2A_3 , A_3A_4 и A_4A_5 равны 7, 10 и 5 соответственно. Найдите расстояние от точки A_1 до прямой A_2A_5 .

3,5

13. В каждой вершине четырёхугольника написано вещественное число. На каждой стороне и на каждой диагонали написана сумма двух чисел, стоящих на его концах. Известно, что сумма всех чисел на сторонах и на диагоналях равна 6, а сумма их квадратов равна 8. Чему равна сумма их кубов?

12

14. Дан треугольник ABC. На прямой AC взяты точки X и Y, отличные от точек A и C, так, что XA = AC = CY. На прямой BC взяты точки K и L, отличные от точек B и C, так, что KB = BC = CL. На прямой AB взяты точки M и N, отличные от точек A и B, так, что MA = AB = BN. Оказалось, что вокруг шестиугольника XKNYLM можно описать окружность. Известно что, периметр треугольника ABC равен $21\sqrt{\frac{3}{7}}$. Найдите радиус описанной вокруг шестиугольника XKNYLM окружности.

15. Дана последовательность целых чисел $0 \le a_1 \le a_2 \le \ldots \le a_{20}$. Пусть $b_n = m$, если a_m — первый член последовательности, который больше или равен n. Известно, что $a_{20} = 45$. Какое наибольшее значение принимает число $a_1 + \ldots + a_{20} + b_1 + \ldots + b_{45}$?

976

16. Дан выпуклый пятиугольник ABCDE, в котором AB параллельно CD, DE параллельно BC, AC=12 и EC=3. Пусть расстояние от точки B до EC равно 16. Найдите расстояние от точки D до AC.

 \uparrow

17. Найдите остаток при делении числа

$$\frac{2^{2013} - 2}{2^2 - 1} + \frac{3^{2013} - 3}{3^2 - 1} + \ldots + \frac{63^{2013} - 63}{63^2 - 1}$$

на 2016.

1010

18. Дан остроугольный треугольник ABC. Обозначим через D основание высоты, опущенной из вершины A на сторону BC. Пусть M — середина BC, H — точка пересечения высот треугольника ABC. Обозначим через E точку пересечения описанной окружности ω треугольника ABC и луча MH, а через F — отличную от E точку пересечения прямой ED и окружности ω . Известно, что AB = 6, AC = 4 и BF = 3. Найти CF.

7

19. Пусть про числа $a_1, a_2, \ldots, a_{400}$ известно, что

$$0 \leqslant a_1 \leqslant a_2 \leqslant \ldots \leqslant a_{400}, \quad a_1 + a_2 + \ldots + a_{398} \leqslant 200, \quad a_{399} + a_{400} \leqslant 200.$$

Укажите наибольшее значение a_{399} при наибольшем значении $a_1^2 + a_2^2 + \ldots + a_{400}^2$.

100

20. Найдите количество пар целых чисел (m,n) таких, что $-2323 \leqslant m,n \leqslant 2323$ и уравнение $x^3 + y^3 = m + 3nxy$ имеет бесконечно много целых решений (x,y).

72