
Олимпиада «Шаг в будущее» по физике

8 класс, 2022 год

1. В дне цилиндрической кастрюли площади 7 дм 2 просверлили отверстие площадью 2 дм 2 и вставили в нее пластмассовую трубку. Масса кастрюли с трубкой равна 2 кг, высота кастрюли 30 см. Кастрюля стоил на ровном листе резины вверх дном. Сверху в трубку осторожно наливают воду. До какого уровня H можно налить воду, чтобы она не вытекала снизу?

мэ
$$\Phi = \frac{m}{1} + M = 3$$
 см

2. Лето 2021 года для жителей Подмосковья оказалось засушливым. Хозяин дачи был вынужден возить воду из озера в бочке. Первая половина дороги между деревней и озером покрыта асфальтом, а оставшиеся 3 км проходят по грунту. Человек набрал в озере полную бочку воды и поехал в деревню со скоростью 9 км/ч. В бочке оказалась дырочка, через которую вода вытекала с объемным расходом 0,05 ведра/мин. На хорошей дороге скорость движения повозки вдвое возросла, а скорость вытекания воды вдвое уменьшилась. Сколько ведер воды вмещается в бочке, если водовоз довез 95% набранной воды?

$$32 = \frac{1}{1} \cdot 32 = N$$

3. В Карибском море пираты захватили катер, перевозивший черный метеорит с вкраплениями золота. Плотность черного метеоритного вещества оказалась $5000~\rm kr/m^3$. Масса всего метеорита 2 кг, а его средняя плотность $6000~\rm kr/m^3$. На черном рынке пиратам за черный метеорит сходу предложили 6000\$, и пираты согласились на сделку. Во сколько раз (и в какую сторону) эта сумма отличается от реальной стоимости золота, содержащегося в этом метеорите? В те времена тройская унция золота стоила 1700\$, а одна тройская унция равна $31,1~\rm r$. Плотность золота $19,3~\rm r/cm^3$.

В четыре раза в пользу черного рынка

4. За время $t_1 = 90$ с температура воды в электрочайнике несколько повысилась. Каков КПД чайника, если время его охлаждения вместе со всей водой до первоначальной температуры $t_2 = 8,5$ мин, а количество теплот, пошедших на нагревание чайника и воды относятся между собой, как 1:4?

$$\%89 = \frac{(z_{7} + z_{7})g}{\%001 \cdot z_{7}} = \mu$$

5. На боковую поверхность непроводящего электрический ток цилиндра нанесли слой электропроводящего вещества, затем тонкий слой изоляции и снова слой проводящего вещества и т. д. — всего пять проводящих слоев. К торцам цилиндра прижали параллельные металлические пластины, на которые подали постоянное электрическое напряжение. Определите тепловую мощность P_5 тока в самом внешнем (пятом) слое проводящего вещества, если в самом внутреннем (первом) слое она равна $P_1=21$ Вт. Радиус цилиндра 10 мм, толщина каждого проводящего слоя равна 1 мм, а изоляции — пренебрежимо мала. Примечание: площадь круга $S=\pi r^2$, где r — радиус круга, $\pi=3.14$.

$$I_{5} = P_{1} \frac{(2r+9h)}{(2r+9h)} I^{2} = 29$$
 BT

6. Ситуационная задача. Энергонезависимая система отопления коттеджа состоит из домика с батареями отопления, подъемного аккумулятора тепловой энергии в виде бочки с водой, и солнечного коллектора для подогрева воды в теплое время года.

Площадь поверхности дома 100 м^2 . Тепловые потери через поверхности домика составляют 0.015 кВт/м^2 (в среднем за отопительный сезон). Длительность отопительного сезона 6 месяцев (октябрь—март включительно). Длительность сезона накопления тепловой энергии 6 месяцев. Температура воды в конце отопительного сезона составляет $40 \,^{\circ}$ С. Максимальная температура воды в начале отопительного сезона $100 \,^{\circ}$ С. Удельная теплоемкость воды $4200 \,^{\circ}$ Дж/(кг $^{\circ}$ С).

Определить объём накопителя тепловой энергии (воды).

⁶м д,8е (ыды) имтерие йовоплет ягьтипохы мэ́-гдО