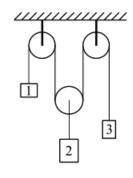
Олимпиада «Физтех» по физике

9 класс, 2019 год, вариант 1

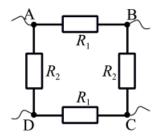
- 1. Пловец переплывает через реку шириной d=100 м за наименьшее время $\tau=100$ с. За это время течение сносит его на S=200 м. Снос это расстояние, на которое сместится пловец вдоль реки к моменту достижения противоположного берега. В подвижной системе отсчета, связанной с водой, пловец движется с постоянной скоростью.
 - 1. Найдите скорость V течения реки.
 - 2. Найдите скорость u пловца в подвижной системе отсчета, связанной с водой.
 - 3. Найдите продолжительность T заплыва, в котором снос будет минимальным.


$$\boxed{ \text{1.5 cm} = \frac{\frac{1}{2}}{2} = 2 \text{ m/c; 3} = \frac{1}{2} = 1 \text{ m/c; 3} } = \frac{1}{2} = 1 \text{ m/c; 3} = \frac{1}{2} = 1 \text{ m/c;$$

- **2.** Плоский склон холма образует угол $\alpha=30^\circ$ с горизонтом. Мяч, брошенный с поверхности склона в горизонтальном направлении «вниз» по склону, через $\tau=0.5$ с движется со скоростью $V_1=13~\rm M/c$. Ускорение свободного падения $g=10~\rm M/c^2$. Силу сопротивления воздуха считайте пренебрежимо малой.
 - 1. Найдите начальную скорость V_0 мяча.
 - 2. Через какое время t_1 после старта мяч находился на максимальном расстоянии от поверхности склона?
 - 3. На каком максимальном расстоянии H от поверхности склона находился мяч в этот момент?

$$\boxed{ \mathbb{M} \ \mathbb{I}, \mathbb{L} \approx \frac{\mathbb{E}\sqrt{\delta}}{\overline{\delta}} = \frac{\mathbb{L}\sqrt{\delta}}{\delta} = \frac{\mathbb{L}\sqrt{\delta}}{\delta} = \frac{\mathbb{L}\sqrt{\delta}}{\delta} = \frac{\mathbb{L}\sqrt{\delta}}{\delta} = \frac{\mathbb{L}\sqrt{\delta}}{\delta} = \frac{\mathbb{L}\sqrt{\delta}}{\delta} = \mathbb{L}\sqrt{\delta} = \mathbb{L}\sqrt{\delta$$

- 3. Цилиндрический сосуд с водой стоит на весах. Показание весов $P_1=10$ Н. В воду опустили льдинку с вмороженным в нее металлическим шариком. Уровень воды в сосуде повысился на h=4 см, а льдинка стала плавать, полностью погрузившись в воду, не касаясь дна и стенок. Плотность воды $\rho=1000$ кг/м³, плотность льда $\rho_1=0.9\rho$, плотность металла $\rho_2=2.7\rho$, площадь поперечного сечения дна сосуда S=100 см². Ускорение свободного падения g=10 м/с².
 - 1. Найдите показание P_2 весов после погружения в сосуд льдинки.
 - 2. Найдите массу m_1 льда.
 - 3. Изменится ли показание весов после таяния льда? Ответ обоснуйте.


4. В системе, показанной на рисунке, массы грузов равны соответственно $m_1=m_3=m=0.1$ кг, $m_2=3m$. Первоначально систему удерживают, затем отпускают. Грузы приходят в движение. Начальные скорости всех грузов нулевые. Ускорение свободного падения $g=10~{\rm m/c^2}$. Массы блоков и нитей по сравнению с массой грузов пренебрежимо малы. Нерастяжимые нити свободно скользят по блокам.

- 1. Найдите скорость V_1 груза 1 в тот момент, когда груз 2 опустится на $H=0.5~\mathrm{m}.$
- 2. Найдите силу T_2 натяжения нити, на которой подвешен груз 2.

H
$$f_{*}$$
, $\Delta = gm\frac{21}{\delta} = cT$ (S ; Δ / M f_{*} , $\Delta = \overline{\Delta} / \sqrt{16} = \overline{M} \frac{2}{\delta} / \sqrt{16}$

5. При подключении источника постоянного напряжения к точкам A и B электрической цепи, схема которой представлена на рисунке, в цепи выделяется мощность $P_1=100$ Вт. При подключении того же источника постоянного напряжения к точкам B и C в цепи выделяется мощность $P_2=2P_1$.

- 1. Найдите отношение $\frac{R_2}{R_1}$.
- 2. Какая мощность P_3 будет выделяться в цепи при подключении того же источника постоянного напряжения к точкам A и C?

$$\text{TH } E = I R =$$