Олимпиада «Покори Воробьёвы горы!» по физике

7-9 классы, 2020 год

Билет 12

Задание 1

Вопрос. В большой камере, из которой был откачан воздух, два гусиных перышка запустили точно навстречу друг другу с одинаковыми скоростями 1 м/с. Начальное расстояние между ними равнялось 5 м. Каким станет расстояние между перышками спустя 1 с? Ускорение свободного падения считать равным $q \approx 10 \text{ м/c}^2$. Ответ объясните.

м 8

Задача. Орудие, установленное на Луне, произвело выстрел под углом к горизонту, и снаряд взорвался в верхней точке траектории. Образовалось три осколка одинаковой массы. Оказалось, что скорости осколков относительно системы отсчета, движущейся со скоростью снаряда перед взрывом, соотносятся как $v_1:v_2:v_3=2:4:5$. Через некоторое время после взрыва, когда осколки еще не упали на поверхность Луны, расстояние между 1 и 2 осколком стало равно $l_{12} = 150$ м. Пренебрегая массой пороховых газов, найдите расстояние между осколками 1 и 3 в этот же момент времени.

$$132 \approx 25 \sqrt{\frac{14}{5}} \sqrt{1} = 81$$

Задание 2

Вопрос. Что такое температура?

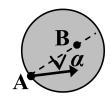
Задача. Ученик 8 класса поставил на огонь большую кастрюлю с водой. Прошло немало времени, но она не закипала — температура перестала расти, так как мощности нагрева не хватало. Ученик решил выяснить, какую температуру имеет вода в кастрюле. У него был только ртутный медицинский термометр. Он налил в термос теплой воды и измерил ее температуру: она оказалась равной $t_0 = 36$ °C. Он опустил в кастрюлю массивную гайку на ниточке, а затем поместил гайку в термос, подождал и измерил новую температуру воды в термосе $t_1 = 38.4$ °C. Гайка еще раз была помещена в кастрюлю, а затем в термос, и после этого вода в термосе имела температуру $t_2 = 40.7$ °C. Какова же температура воды в кастрюле? Теплоемкостью термометра пренебречь.

$$0^{\circ} \, 86 = \frac{0^{1} \, 2^{1} - \frac{1}{2} \, 1}{2^{1} - 0^{1} - 1^{1} \, 2}$$

Задание 3

Вопрос. Пусть у нас есть элемент цепи постоянного тока, не подчиняющийся закону Ома: ток через него при напряжении U равен $I=aU^2$ ($a={\rm const}$). Какой формулой описывается для этого элемента зависимость потребляемой мощности от силы тока?

$$P = \frac{\sqrt{a}}{\sqrt{3/2}}$$


Задача. Две лампочки, рассчитанные на одинаковые номинальные напряжения, но с номинальными мощностями, отличающимися в $k=\frac{4}{3}$ раза, не являются линейными элементами: протекающий через них ток пропорционален корню квадратному из приложенного напряжения. Эти лампочки дважды подключили к источнику, поддерживающему на своих клеммах постоянное напряжение, в точности равное номинальному для лапочек: в первый раз — параллельно, во второй — последовательно. Во сколько раз отличаются общие потребляемые мощности в первом и втором случае?

$$\boxed{26,2 \approx \frac{35}{4}} = \frac{\frac{35}{4}}{\frac{34}{4}} \sqrt{(4+1)}$$

Задание 4

ВОПРОС. Жесткий стержень скользит, вращаясь, по ровной поверхности. В каком случае скорость центра масс стержня и угловая скорость его вращения не будут изменяться?

Задача. Диск, изготовленный из однородного листа жести, скользит по горизонтальной гладкой поверхности. В некоторый момент времени скорости двух его точек $(A\ u\ B)$ оказались равны по модулю $v=1,5\ \mathrm{m/c}$, и скорость точки A, находящейся на конце общего диаметра, направлена под углом $\alpha=30^\circ$ к этому диаметру. Радиус диска $R=24\ \mathrm{cm}$, $|AB|=36\ \mathrm{cm}$. Найдите возможные значения величин угловой скорости диска и перемещения его центра за $1\ \mathrm{c}$ после указанного момента времени.

возможны два случая: $\omega=0$, $s_O=vt=1$,5 м и $\omega=\frac{25}{6}$ с $^{-1}\approx 4$,17 с $^{-1}$, $s_O\approx 1$,32 м