
Московская олимпиада школьников по физике

11 класс, 2021/22 год

Отборочный этап, второй тур

Задача 1. **Контур с диодом.** В цепи, схема которой изображена на рисунке слева, ключ K изначально замкнут, а ток через источник ЭДС не меняется. Значения параметров цепи равны: $\mathcal{E}=4.5~\mathrm{B}, L=24~\mathrm{mTh}, C=10~\mathrm{mk\Phi}, R=45~\mathrm{Om}.$ Вольт-амперная характеристика диода показана на рисунке справа. Внутренним сопротивлением батареи можно пренебречь. Ключ размыкают, при этом искры в контакте не возникает (система находится в вакууме, размыкание производят очень быстро). Ответьте на следующие вопросы, выразите ответы в Вольтах, округлите до целых.

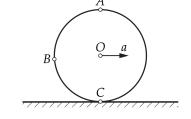
- 1. Чему равна ЭДС индукции в катушке сразу после размыкания ключа?
- 2. Определите максимальное значение ЭДС индукции.
- 3. Чему равно напряжение на конденсаторе через большое время после размыкания ключа?

₽ (ε; ĉ (ε; t (t

ЗАДАЧА 2. **Расчёт цикла.** С некоторой массой идеального газа совершают цикл, состоящий из изотермического расширения, изохорического охлаждения и адиабатического сжатия. Известно, что КПД цикла равен $\eta = 20\%$.

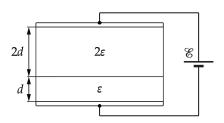
1. В какое количество раз n работа газа при расширении больше работы газа за цикл?

\mathcal{N}_{0}	1	2	3	4	5	6
п	1,25	2,5	4,0	5,0	6,25	7,5


2. Найдите отношение $k = Q_{\rm x}/A$, отведённого от газа количества теплоты $Q_{\rm x}$, к работе A газа, совершённой им за цикл.

$\mathcal{N}_{\underline{0}}$	1	2	3	4	5	6
k	1,25	2,5	4,0	5,0	6,25	7,5

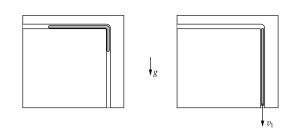
ЗАДАЧА 3. **Ускорения.** Колесо катится без проскальзывания по горизонтальной плоскости, при этом ось колеса движется с ускорением $a=1~{\rm m/c^2}.~{\rm B}$ некоторый момент времени ускорение нижней точки колеса (т. C) оказывается равно $a.~{\rm B}$ этот момент определите ускорение следующих точек колеса:


- 1. т. А, лежащей на вертикальном диаметре колеса;
- $2. \, \text{т. } B$, лежащей на горизонтальном диаметре.

Ответы выразите в M/c^2 , округлите до десятых.

2,2 (2;2,2 (1

ЗАДАЧА 4. Диэлектрики внутри. Между обкладками плоского конденсатора (см. рисунок) находятся: пластина толщиной d=0,885 мкм из диэлектрика с проницаемостью $\varepsilon=10$ и пластина толщиной 2d=1,77 мкм из материала с диэлектрической проницаемостью $2\varepsilon=20$. Конденсатор подключен к источнику с ЭДС $\mathscr{E}=48$ В. Размеры обкладок конденсатора значительно больше расстояния между ними. Электрическая постоянная: $\varepsilon_0=8,85\cdot 10^{-12}$ Ф/м.



- 1. Найдите поверхностную плотность свободных зарядов на верхней обкладке конденсатора.
- 2. Чему равна суммарная поверхностная плотность поляризационных зарядов на границе раздела диэлектриков?

Ответы выразите в ${\rm mKn/m^2},$ округлите до десятых.

1,0 (2;4,2 (1

Задача 5. Верёвка в канале. Однородная гибкая верёвка массой m=0.18 кг и длиной L=1.8 м удерживается в узком канале, образованном каменными блоками, при этом в начальный момент треть верёвки висит вертикально (см. рисунок, слева). Поверхности блоков гладкие. В некоторый момент верёвку отпускают, и она начинает двигаться. Можно считать, что в процессе движения все точки верёвки в любой момент времени имеют одинаковые по модулю скорости, а длина верёвки не меняется. Неупругими деформа-

циями и трением о воздух можно пренебречь. Диаметр верёвки и радиус кривизны в точке перегиба значительно меньше длины верёвки. Поперечный размер канала близок к диаметру верёвки. Ускорение свободного падения g считайте равным $10~{\rm m/c^2}$.

- 1. На какое расстояние по вертикали опустится центр масс верёвки относительно своего первоначального положения к тому моменту, когда вся верёвка окажется в вертикальной части канала? Ответ выразите в сантиметрах, округлите до целого.
- 2. С какой скоростью v_1 будет двигаться верёвка в тот момент, когда полностью соскользнёт

- с горизонтальной поверхности (см. рисунок, справа)? Ответ дайте в м/с, округлите до целого.
- 3. Найдите абсолютную величину импульса верёвки в момент, когда её треть ещё находится на горизонтальной поверхности. Ответ выразите в кг \cdot м/с, округлите до сотых.

£8,0 (£;4) (£;08 (1