Московский физико-технический институт

Письменный экзамен по математике, 2007 год, вариант 1

1. Решить уравнение

$$\log_{11-x^2} \left(2^x - 6 + 3 \cdot 2^{2-x} \right) = \log_{x-1} \left(2^x - 6 + 3 \cdot 2^{2-x} \right).$$

 $\varepsilon = 2x, \varepsilon_2 = 1$

2. Решить уравнение

$$\sin 2x = 2\sin^3|x| + \sin 2x\cos x.$$

$$\boxed{1-\geqslant n \text{ , } \mathbb{Z}\ni n \text{ , } n\pi\mathbb{Z}+\frac{2\pi}{3}+2\pi n \text{ , } n\neq \infty}$$

3. Решить неравенство

$$\sqrt{\frac{3-2x}{1+2x}} + \frac{\sqrt{1+2x}}{2\sqrt{3-2x} - \sqrt{2}} \geqslant 0.$$

 $\frac{t}{2} > x > \frac{7}{1}$

4. Окружности ω_1 и ω_2 лежат внутри треугольника ABC, в котором AB = BC = l, AC = 2, а радиус ω_1 в два раза больше радиуса ω_2 . Окружности ω_1 и ω_2 касаются внешним образом, причём ω_1 касается сторон AB и AC, а ω_2 — сторон BC и AC треугольника ABC. Найти радиус окружности ω_1 , если l = 6. Найти все значения l, при которых существуют указанные окружности.

$$R_1 = \frac{20}{3\sqrt{35}+10\sqrt{2}}, l = \frac{9}{7}$$

5. Найти все значения параметра a, при которых наибольшее значение величины x^2+y на множестве пар действительных чисел (x;y), удовлетворяющих одновременно двум неравенствам $y \leqslant \sqrt{1-x^2}$ и $y+|x-a|\leqslant 1$, будет максимально возможным. Найти это максимально возможное значение.

$$\boxed{\frac{5}{\sqrt{3}-1}}\leqslant |a|\leqslant \frac{\sqrt{3+1}}{2}; \frac{5}{4}$$

- 6. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ четыре числа длины рёбер и диагонали AC_1 образуют арифметическую прогрессию с положительной разностью d, причём $AA_1 < AB < BC$. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB_1A_1 , ADD_1A_1 , ABCD, а вторая граней BCC_1B_1 , CDD_1C_1 , $A_1B_1C_1D_1$. Найти:
 - а) длины рёбер параллелепипеда,
 - б) угол между прямыми CD_1 и AC_1 ,
 - в) радиус R.

(a)
$$AA_1 = d\sqrt{2}$$
, $AB = d\left(\frac{1+2\sqrt{2}}{4}\right)$; (b) $AA_1 = d\left(\frac{3+3\sqrt{2}-\sqrt{5+6\sqrt{2}}}{4}\right)$; (c) $AA_1 = d\left(\frac{3+3\sqrt{2}-\sqrt{5+6\sqrt{2}}}{4}\right)$