\mathbf{T} реугольник $\mathbf{X}\mathbf{Y}\mathbf{Z}$

В задачах с двумя окружностями может помочь вспомогательный треугольник, который обычно нужно дополнительно строить (поэтому мы и называем его условно XYZ). Располагаться он может по-разному, но одна из его сторон — отрезок, соединяющий центры окружностей (или параллельно сдвинутый такой отрезок).

Задача 1. Окружности радиусами R и r касаются внешним образом. Найдите длину отрезка их общей касательной.

 $3H\sqrt{2}$

Задача 2. (problems.ru, 52889) Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

08 и 8₽

ЗАДАЧА 3. (problems.ru, 53084) Две окружности радиусов 5 и 3 касаются внутренним образом. Хорда большей окружности касается меньшей окружности и делится точкой касания в отношении 3:1. Найдите длину этой хорды.

8

Задача 4. ($E\Gamma$ Э, 2013) Окружности радиусов 1 и 4 с центрами O_1 и O_2 соответственно касаются внешним образом в точке C. AO_1 и BO_2 — параллельные радиусы этих окружностей, причём $\angle AO_1O_2=60^\circ$. Найдите AB.

7 ипи д

Задача 5. ($*\Phi$ изmex*, 2012.4) Две окружности разных радиусов касаются внешним образом. К ним проведены две общие внешние касательные AC и BD. Их точки касания с меньшей окружностью — A и B, с большей окружностью — C и D. Найдите радиусы окружностей, если известно, что AB=24/5, AC=12.

21 и 8

ЗАДАЧА 6. («Физтех», 2023, 10) Окружности Ω и ω радиусов 5 и 3 соответственно касаются друг друга внутренним образом в точке T. Прямая ℓ пересекает окружность ω в точках B и C, а окружность Ω — в точках A и D, причём B лежит между A и C, C лежит между B и D, а центры окружностей лежат по одну сторону от ℓ . Известно, что AB:BC:CD=1:4:7. Найдите AC^2 . При необходимости округлите ответ до трёх знаков после запятой.

 $6 \rlap{-} 99'01 \approx \frac{028}{77}$

Задача 7. («Физтех», 2023, 11) Окружности Ω и ω радиусов 5 и 4 соответственно касаются друг друга внешним образом в точке T. Прямая ℓ пересекает окружность ω в точках A и B, а окружность Ω — в точках C и D, причём B лежит между A и C, C лежит между B и D, а центры окружностей лежат по одну сторону от ℓ . Известно, что AB:BC:CD=4:1:6. Найдите BC^2 . При необходимости округлите ответ до трёх знаков после запятой.

 44.2×3.244