Тренировочные задачи

Угол между прямой и плоскостью

Здесь публикуются авторские задачи, начиная с элементарных и заканчивая уровнем C2 на $E\Gamma 9$ по математике. Цель этих задач — подготовить школьника к дальнейшей работе с «Задачником C2».

1. В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна 3, а боковое ребро равно $\sqrt{6}$. Найдите угол между прямой AC_1 и плоскостью ABC.

300

2. На ребре B_1C_1 куба $ABCDA_1B_1C_1D_1$ взята точка K так, что $B_1K:KC_1=5:7$. Найдите угол между прямой AK и плоскостью ABC.

srctg 13

3. В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 2, а боковое ребро равно $\sqrt{2}$. Найдите угол между прямой BA_1 и плоскостью BCC_1 .

۰9₹

4. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ сторона основания равна 3, а боковое ребро равно 4. Найдите угол между прямой AD_1 и плоскостью ABB_1 .

arctg $\frac{3\sqrt{3}}{5}$

5. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ сторона основания равна 6, а боковое ребро равно 8. Найдите угол между прямой CD_1 и плоскостью ABB_1 .

 $\frac{10}{3\sqrt{3}}$ arcsin

6. В правильной четырёхугольной пирамиде SABCD (с вершиной S) сторона основания равна 2, а боковое ребро равно $\sqrt{3}$. Найдите угол между прямой AC и плоскостью ABS.

300

7. В правильной шестиугольной пирамиде SABCDEF (с вершиной S) сторона основания равна 2, а боковое ребро равно $\sqrt{10}$. Найдите угол между прямой CD и плоскостью ABS.

∘9⊅

8. В правильной шестиугольной пирамиде SABCDEF (с вершиной S) сторона основания равна 2, а боковое ребро равно 3. Найдите угол между прямой SA и плоскостью SBE.

 $\frac{1}{\sqrt{3}}$ arcsin

9. В правильной четырёхугольной пирамиде SABCD (с вершиной S) сторона основания равна 4, а боковое ребро равно 3. Точка M — середина ребра SB. Найдите угол между прямой AM и плоскостью ASC.

 $\operatorname{arctg} \frac{2\sqrt{66}}{33}$

10. Точка $M-$	середина	ребра	BB_1	куба	$ABCDA_1$	$B_1C_1D_1$.	Найдите	угол	между	прямой	AM
и плоскостью A	BC_1 .										

 $\frac{1}{\sqrt{10}}$

11. В правильной треугольной пирамиде SABC (с вершиной S) сторона основания равна 3, а боковое ребро равно $\sqrt{10}$. Точка M — середина ребра SB. Найдите угол между прямой AM и плоскостью ABC.

30°

12. Основанием прямой призмы $ABCDA_1B_1C_1D_1$ служит ромб ABCD со стороной 12 и углом BAD, равным 60°. Боковое ребро призмы равно 5. Найдите угол между прямой AB_1 и плоскостью BDD_1 .

13. В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 2, а боковое ребро равно $\sqrt{3}$. Точка M — середина ребра A_1B_1 . Найдите угол между прямой AM и плоскостью ABC_1 .

14. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямой BD_1 и плоскостью BC_1D .

15. В треугольной пирамиде ABCD рёбра AB и BC равны соответственно 3 и 4, остальные рёбра равны 5. Найдите угол между прямой BD и плоскостью ABC.

∘09

- **16.** Боковые рёбра пирамиды наклонены к плоскости основания под равными углами. Докажите, что основание высоты пирамиды совпадает с центром окружности, описанной вокруг основания пирамиды.
- **17.** Основанием пирамиды служит треугольник со сторонами 5, 5 и 6. Боковые рёбра пирамиды наклонены к плоскости основания под углом 60°. Найдите объём пирамиды.

