Призма

1. $(M\Gamma Y, \mathcal{A}BU, 2014.7)$ В основании прямой призмы лежит правильный треугольник со стороной 1. Высота призмы равна $\sqrt{2}$. Найдите расстояние между скрещивающимися диагоналями боковых граней.

2. ($M\Gamma Y$, $\mathcal{A}BU$, 2015.7) В правильную треугольную призму с основаниями ABC, A'B'C' и рёбрами AA', BB', CC' вписана сфера. Найдите её радиус, если известно, что расстояние между прямыми AE и BD равно $\sqrt{13}$, где E и D — точки, лежащие на A'B' и B'C' соответственно, и A'E:EB'=B'D:DC'=1:2.

- **3.** («Физтех», 2016.7) Дана прямая треугольная призма $ABCA_1B_1C_1$. Сфера с диаметром AC пересекает рёбра AB и BC соответственно в точках F и N, отличных от вершин призмы. Отрезки C_1F и A_1N пересекаются в точке P, и при этом $A_1N = 7$, $C_1P = 6$.
 - а) Найдите угол PFA.
 - б) Найдите отношение AF : FB.
 - в) Пусть дополнительно известно, что AB = 6. Найдите объём призмы.

а) 90°; б) 5 : 1; в) 21√10

4. («Физтех», 2016.7) Высота правильной треугольной призмы $ABCA_1B_1C_1$ равна 12. Сфера Ω радиуса $\sqrt{35/3}$ касается всех боковых граней призмы. На отрезках AA_1 и BB_1 выбраны соответственно точки K и L такие, что $KL \parallel AB$, а плоскости KBC и LA_1C_1 касаются сферы Ω . Найдите объём призмы и длину отрезка AK.

$$Φ = λΛ$$
 πιπ $δ = λΛ$; $\overline{ε}$ $\sqrt{02}$ $ν = Λ$

5. $(M\Phi T U, 1996.5)$ В основании призмы $ABCDA_1B_1C_1D_1$ лежит прямоугольник ABCD. Острые углы D_1DA и D_1DC равны между собой, угол между ребром D_1D и плоскостью основания призмы равен $\arccos\frac{1}{\sqrt{13}}$, а $CD=5\sqrt{6}$. Все грани призмы касаются некоторой сферы. Найти длину BC, угол между плоскостями D_1DC и ABC, а также расстояние от точки D до центра сферы.

$$BC = 5\sqrt{6}$$
; arccos $\frac{1}{5}$; 12

6. («Ломоносов», 2008.8) Основанием прямой призмы ABCA'B'C' служит прямоугольный треугольник с катетами AB=6 и AC=5. Через середину бокового ребра CC'=4 параллельно AB проведена прямая l. Какие значения может принимать площадь параллелограмма, у которого две вершины — точки A и C, а остальные вершины лежат на прямых A'B и l соответственно?

$$\overline{68}$$
 $\sqrt{6}$ ипи $\overline{61}$ $\sqrt{6}$

7. $(M\Gamma Y, Mexmam, 2001-03.5)$ Основанием прямой призмы ABCA'B'C' с высотой $\frac{4}{7}$ служит треугольник ABC, в котором AB=BC=1 и $AC=\frac{3}{7}$. Через точку пересечения диагоналей грани ACC'A' на расстоянии $\frac{4}{13}$ от точки A проводится плоскость, делящая объем призмы пополам. Какова наибольшая площадь сечения призмы такой плоскостью?

- **8.** (Bcepocc., 2018, финал, 11.6) Три диагонали правильной n-угольной призмы пересекаются в одной внутренней точке O. Докажите, что точка O центр призмы. (Диагональ призмы это отрезок, соединяющий две её вершины, не находящиеся в одной грани.)
- **9.** (*Турнир городов*, 2001, 10–11) В каждой боковой грани пятиугольной призмы есть угол φ (среди углов этой грани). Найдите все возможные значения φ .
- **10.** (*Турнир городов*, 1995, 10–11) При каких n можно раскрасить в три цвета все ребра n-угольной призмы (основания n-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?
- **11.** (*Турнир городов*, 2002, 10–11) Существует ли правильная треугольная призма, которую можно оклеить (без наложений) различными равносторонними треугольниками? (Разрешается перегибать треугольники через рёбра призмы.)
- **12.** (*Московская устная олимпиада по геометрии*, 2016, 10–11) В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?